Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số cần tìm là d sao cho 2n+3 chia hết cho d ; n+1 Chia hết cho d suy ra d thuộc tập hợp ước chung lớn nhất của 2n+3 và n+1
2n+3 chia hết cho d ; n+1 chia hết cho d
2n+3 chia hết cho d suy ra :2n chia hết cho d
:3 chia hết cho d \(\Rightarrow\) D=1
n+1 chia hết cho d suy ra : n chia hết cho d
: 1 chia hết cho d\(\Rightarrow\)d = 1
từ phương trình trên suy ra d=1
Hay ước chung lớn nhất của 2n+3 và n+1
Vì hai số nguyên tố cùng nhau có ƯCLN là 1 lên 2n+3 và n+1 là hai số nguyên tố cùng nhau
Gọi d là ƯCLN( \(\frac{n\left(n+1\right)}{2}\), 2n+1) ( d thuộc N*)
Khi đó \(\frac{n\left(n+1\right)}{2}\) chia hết cho d và 2n+1 chia hết cho d
<=> n(n+1) chia hết cho d và 2n+1 chia hết cho d
<=> n2 + n chia hết cho d và n(2n+1) chia hết cho d
<=> n2+n chia hết cho d, 2n2+n chia hết cho d
=> (2n2+n) - (n2+n) chia hết cho d
=> n2 chia hết cho d
Mà n2+n chia hết cho d => (n2+n)-n2 chia hết cho d
=> n chia hết cho d
=> 2n chia hết cho d
Mà 2n+1 chia hết cho d
=> (2n+1)-2n chia hết cho d
=> 1 chia hết cho d
Mà d \(\in\) N => d=1
Vậy \(\frac{n\left(n+1\right)}{2}\) và 2n+1 nguyên tố cùng nhau với mọi n \(\in\) N
Gọi d = ƯCLN( n(n+1)/2, 2n+1) ( d thuộc N*)
=> n(n+1)/2 chia hết cho d, 2n+1 chia hết cho d
=> n(n+1) chia hết cho d, 2n+1 chia hết cho d
=> n2+n chia hết cho d, n(2n+1) chia hết cho d
=> n2+n chia hết cho d, 2n2+n chia hết cho d
=> (2n2+n) - (n2+n) chia hết cho d
=> 2n2+n-n2-n chia hết cho d
=> n2 chia hết cho d
Mà n2+n chia hết cho d => (n2+n)-n2 chia hết cho d
=> n chia hết cho d
=> 2n chia hết cho d
Mà 2n+1 chia hết cho d => (2n+1)-2n chia hết cho d
=> 1 chia hết cho d
Mà d thuộc N => d=1
=> ƯCLN( n(n+1)/2, 2n+1)=1
Chứng tỏ n(n+1)/2 và 2n+1 nguyên tố cùng nhau với mọi n thuộc N
100 + 100 + 100
Các bạn trả lời nhanh nhất mình k cho mà bạn nào trả lời nhanh nhất thì các bạn k cho bạn đấy mình sẽ k lại cho
mk năm nay học lớp 8 mà mới chỉ học công thức thôi chứ chưa học (hoặc đã học mà quên mất) nhưng chứng minh cái này mk mới chỉ học công thức thôi chứ chứng minh bài toán tổng quánthì chịu
Gọi d là UCLN của 2 số đó
n(n+1)/2 : d =>n(n+1) :d => n2+n :d(1)
2n+1 :d => n(2n+1) :d => 2n2+n :d(2)
Lấy (2)-(1) ta dc n2:d =>n:d =>2n:d
2n:d
2n+1:d
=>(2n+1)-2n :d
=>1:d
d=1
UCLN=1 nên 2 số này nguyên tố cùng nhau
ai làm được có cả lời giải mình cho