Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài dài nên cô sẽ gợi ý An theo bước sau:
đầu tiên ta chứng minh: \(0< a< b;\)0<m<n thì : \(\frac{a+m}{b+m}< \frac{a+n}{b+n}\)(1)
thật vậy: \(\frac{a+m}{b+m}< \frac{a+n}{b+n}\Leftrightarrow\frac{a+m}{b+m}-\frac{a+n}{b+n}< 0\Leftrightarrow\left(n-m\right)\left(a-b\right)
< 0\)(vì n-m>0; a-b<0)
TH1: nếu x và y cùng dấu khi đó: \(\left|x\right|\ge\left|x-y\right|\) hoặc \(\left|y\right|>\left|x-y\right|\)( chứng minh bằng cách chia hai trường hợp x,y>0; x<y<0)
giả sử |x|>|x-y|
ÁP dụng bất đẳng thức (1) với |x| và |x-y|, 1 và 2008 ta có:\(\frac{\left|x\right|}{\left|x\right|+2008}>\frac{\left|x-y\right|}{\left|x-y\right|+2008}\)suy ra bất đẳng thức đúng.
TH2: x, y trái dấu khi đó: \(\left|x-y\right|=\left|x\right|+\left|y\right|\)
ta có: \(\frac{\left|x-y\right|}{\left|x-y\right|+2008}=\frac{\left|x\right|+\left|y\right|}{\left|x\right|+\left|y\right|+2008}\)
ta thấy: \(\frac{\left|x\right|}{\left|x\right|+2008}>\frac{\left|x\right|}{\left|x\right|+\left|y\right|+2008}\)
\(\frac{\left|y\right|}{\left|y\right|+2008}>\frac{\left|y\right|}{\left|x\right|+\left|y\right|+2008}\)
cộng hai vế của bất đẳng thức ta suy ra điều phải chứng minh.
TH3: nếu x = y = 0 thì bất đẳng thức đúng.
TA CÓ ĐIỀU PHẢI CHỨNG MINH.
Bài 1:
\(\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{6}\right|+...+\left|x+\frac{1}{101}\right|=101x\)
Ta thấy:
\(VT\ge0\Rightarrow VP\ge0\Rightarrow101x\ge0\Rightarrow x\ge0\)
\(\Rightarrow\left(x+\frac{1}{2}\right)+\left(x+\frac{1}{6}\right)+...+\left(x+\frac{1}{101}\right)=101x\)
\(\Rightarrow\left(x+x+...+x\right)+\left(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{101}\right)=0\)
\(\Rightarrow10x+\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{10.11}\right)=0\)
\(\Rightarrow10x+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{10}-\frac{1}{11}\right)=0\)
\(\Rightarrow10x+\left(1-\frac{1}{11}\right)=0\)
\(\Rightarrow10x+\frac{10}{11}=0\)
\(\Rightarrow10x=-\frac{10}{11}\Rightarrow x=-\frac{1}{11}\)(loại,vì x\(\ge\)0)
Bài 2:
Ta thấy: \(\begin{cases}\left(2x+1\right)^{2008}\ge0\\\left(y-\frac{2}{5}\right)^{2008}\ge0\\\left|x+y+z\right|\ge0\end{cases}\)
\(\Rightarrow\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|\ge0\)
Mà \(\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|=0\)
\(\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|=0\)
\(\Rightarrow\begin{cases}\left(2x+1\right)^{2008}=0\\\left(y-\frac{2}{5}\right)^{2008}=0\\\left|x+y+z\right|=0\end{cases}\)\(\Rightarrow\begin{cases}2x+1=0\\y-\frac{2}{5}=0\\x+y+z=0\end{cases}\)
\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\x+y+z=0\end{cases}\)\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\-\frac{1}{2}+\frac{2}{5}+z=0\end{cases}\)
\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\-\frac{1}{10}=-z\end{cases}\)\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\z=\frac{1}{10}\end{cases}\)
(2x - 1 )2008+(y - 2/5)2008 + |x + y - z | = 0
=> ( 2x - 1) 2008 =0 => 2x - 1 =0 => 2x = 1 => x = 1/2
( y - 2/5 )2008 = 0 y - 2/5 = 0 y =2/5 y = 2/5
|x + y -z | = 0 x + y - z = 0 x + 2/5 - z = 0 1/2 - 2/5 -z = 0
=>x = 1/2 =>x = 1/2
y = 2/5 y = 2/5
5/10 - 4/10 = z z = 1/ 10
Vậy x = 1/2 ; y = 2/5 : z = 1/10
( nhớ cho mk nha )
ta có: \(\left(2x-1\right)^{2008}\ge0\)
\(\left(y-\frac{2}{5}\right)^{2008}\ge0\)
\(\left|x+y-z\right|\ge0\)
\(\Rightarrow\left(2x-1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y-z\right|\ge0\)
để \(\left(2x-1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y-z\right|=0\)
\(\Rightarrow\left(2x-1\right)^{2008}=0\Rightarrow2x-1=0\Rightarrow x=\frac{1}{2}\)
\(\left(y-\frac{2}{5}\right)^{2008}=0\Rightarrow y-\frac{2}{5}=0\Rightarrow\frac{2}{5}\)
\(\left|x+y-z\right|=0\Rightarrow x+y-z=0\Rightarrow z=x+y\Rightarrow z=\frac{1}{2}+\frac{2}{5}=\frac{9}{10}\)
KL: x= 1/2; y= 2/5; z=9/10
( mk nghĩ nó còn có nhiều đáp số lắm, nhưng mk ko bít cách lm)
\(\left(2x-1\right)^{2008}\ge0\)
\(\left(y-\frac{2}{5}\right)^{2008}\ge0\)
\(\left|x+y+z\right|\ge0\)
\(\Rightarrow\left(2x-1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|\ge0\)
Mà: \(\left(2x-1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|=0\)
\(\Rightarrow\left(2x-1\right)^{2008}=0;\left(y-\frac{2}{5}\right)^{2008}=0;\left|x+y+z\right|=0\)
\(\Rightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{2}{5}\\z=\frac{-9}{10}\end{cases}}\)
────(♥)(♥)(♥)────(♥)(♥)(♥) __ ɪƒ ƴσυ’ʀє αʟσηє,
──(♥)██████(♥)(♥)██████(♥) ɪ’ʟʟ ɓє ƴσυʀ ѕɧα∂σѡ.
─(♥)████████(♥)████████(♥) ɪƒ ƴσυ ѡαηт тσ cʀƴ,
─(♥)██████████████████(♥) ɪ’ʟʟ ɓє ƴσυʀ ѕɧσυʟ∂єʀ.
──(♥)████████████████(♥) ɪƒ ƴσυ ѡαηт α ɧυɢ,
────(♥)████████████(♥) __ ɪ’ʟʟ ɓє ƴσυʀ ρɪʟʟσѡ.
──────(♥)████████(♥) ɪƒ ƴσυ ηєє∂ тσ ɓє ɧαρρƴ,
────────(♥)████(♥) __ ɪ’ʟʟ ɓє ƴσυʀ ѕɱɪʟє.
─────────(♥)██(♥) ɓυт αηƴтɪɱє ƴσυ ηєє∂ α ƒʀɪєη∂,
───────────(♥) __ ɪ’ʟʟ ʝυѕт ɓє ɱє.
(⁀‵⁀) ✫ ✫ ✫.
`⋎´✫¸.•°*”˜˜”*°•✫
..✫¸.•°*”˜˜”*°•.✫
☻/ღ˚ •。* ♥ ˚ ˚✰˚ ˛★* 。 ღ˛° 。* °♥ ˚ • ★ *˚ .ღ 。
/▌*˛˚ღ •˚ Type your status message ˚ ✰* ★
GOOD ♥
(¯`♥´¯).NİGHT.♥
.`•.¸.•´(¯`♥´¯)..SWEET ♥
*****.`•.¸.•´(¯`♥´¯)..DREAMS ♥
***********.`•.¸.•´(¯`♥´¯)..♥
...***************.`•.¸.•´……♥ ♥
..... (¯`v´¯)♥
.......•.¸.•´
....¸.•´
... (
☻/
/▌♥♥
/ \ ♥Type your status message♥
ta có: \(\left(\text{2x − 1}\right)^{2018}\) ≥ 0
\(\left(y-\frac{2}{5}\right)^{2018}\) ≥ 0
\(\left|x+y-z\right|\) ≥ 0
⇒ \(\left(\text{2x − 1 }\right)^{2018}\)+ \(\left(y-\frac{2}{5}\right)^{2018}\) +\(\left|\text{ x + y − z }\right|\) ≥ 0
để \(\left(\text{2x − 1}\right)^{2018}\) + \(\left(y-\frac{2}{5}\right)^{2018}\) + \(\left|\text{x + y − z}\right|\) = 0
⇒ \(\left(\text{2x − 1}\right)^{2018}\) = 0 ⇒ 2x − 1 = 0 ⇒ x = \(\frac{1}{2}\)
\(\left(y-\frac{2}{5}\right)^{2018}\) = 0 ⇒ y − \(\frac{2}{5}\) = 0⇒ \(\frac{2}{5}\)
\(\left|\text{x + y − z}\right|\) = 0 ⇒ x + y − z = 0 ⇒ z = x + y ⇒z = \(\frac{1}{2}\) + \(\frac{2}{5}\) = \(\frac{9}{10}\)
KL: x = \(\frac{1}{2}\); y = \(\frac{2}{5}\); z = \(\frac{9}{10}\)
( mình nghĩ nó còn có nhiều đáp số lắm, nhưng mình ko biết cách làm)
Chúc bạn học có hiệu quả!
Tìm x,y,z biết :
\(\left(2x-1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y-z\right|=0\)
Bài làm:
Vì a,b,c khác 0 nên:
Ta có: \(a\left(y+z\right)=b\left(z+x\right)=c\left(x+y\right)\)
\(\Leftrightarrow\frac{y+z}{bc}=\frac{z+x}{ca}=\frac{x+y}{ab}\) (1) (chia cả 3 vế cho abc)
Áp dụng t/c dãy tỉ số bằng nhau ta được:
\(\left(1\right)=\frac{x+y-z-x}{ab-ca}=\frac{y+z-x-y}{bc-ab}=\frac{z+x-y-z}{ca-bc}\)
\(=\frac{y-z}{a\left(b-c\right)}=\frac{z-x}{b\left(c-a\right)}=\frac{x-y}{c\left(a-b\right)}\)
=> đpcm
Bài làm:
Vì a,b,c khác 0 nên:
Ta có: a(y+z)=b(z+x)=c(x+y)�(�+�)=�(�+�)=�(�+�)
⇔y+zbc=z+xca=x+yab⇔�+���=�+���=�+��� (1) (chia cả 3 vế cho abc)
Áp dụng t/c dãy tỉ số bằng nhau ta được:
(1)=x+y−z−xab−ca=y+z−x−ybc−ab=z+x−y−zca−bc(1)=�+�−�−���−��=�+�−�−���−��=�+�−�−���−��
=y−za(b−c)=z−xb(c−a)=x−yc(a−b)=�−��(�−�)=�−��(�−�)=�−��(�−�)
=> đpcm
- Hic, Việt không giúp t à
T đoán là nó k biết làm :)