\(\frac{2015}{4034}\)< \(\frac{1}{^{2^2}}\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 4 2018

Đặt \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2016^2}\) ta  có : 

\(A>\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{2016.2017}\)

\(A>\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2016}-\frac{1}{2017}\)

\(A>\frac{1}{2}-\frac{1}{2017}\)

\(A>\frac{2015}{4034}\) \(\left(1\right)\)

Lại có : 

\(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2015.2016}\)

\(A< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2015}-\frac{1}{2016}\)

\(A< 1-\frac{1}{2016}\)

\(A< \frac{2015}{2016}\) \(\left(2\right)\)

Từ (1) và (2) suy ra : \(\frac{2015}{4034}< A< \frac{2015}{2016}\) ( đpcm ) 

Vậy \(\frac{2015}{4034}< \frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2016^2}< \frac{2015}{2016}\)

Chúc bạn học tốt ~ 

7 tháng 4 2018

cam on ban rat nhieu PHUNG MINH QUAN !!!!!!!!!!

18 tháng 4 2019

\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2016^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2015.2016}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2015}-\frac{1}{2016}\)

\(=1-\frac{1}{2016}=\frac{2015}{2016}\)

=> \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2016^2}< \frac{2015}{2016}\)

\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2016^2}>\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2016.2017}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}...+\frac{1}{2016}-\frac{1}{2017}\)

\(=\frac{1}{2}-\frac{1}{2017}=\frac{2015}{4024}\)

=> \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2016^2}>\frac{2015}{4034}\)

vậy ta có điều cần chứng minh

9 tháng 8 2016

\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2015^2}+\frac{1}{2016^2}\)

\(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2014.2015}+\frac{1}{2015.2016}\)

\(A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2014}-\frac{1}{2015}+\frac{1}{2015}-\frac{1}{2016}\)

\(A< 1-\frac{1}{2016}\)

\(A< \frac{2015}{2016}\left(đpcm\right)\)

\(A=\frac{1}{2.2}+\frac{1}{3.3}+.....+\frac{1}{2016.2016}< \frac{1}{1.2}+\frac{1}{2.3}+.....+\frac{1}{2015.2016}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-.....+\frac{1}{2015}-\frac{1}{2016}\)

\(=1-\frac{1}{2016}\)

\(=\frac{2015}{2016}\)

\(\Rightarrow A< \frac{2015}{2016}\)

30 tháng 4 2018

một thửa ruộng hình bình hành có tổng đáy và chiều cao 96m . Cạnh đáy bằng 3/3 chiều cao

A. Tính diện tích thửa ruộng đó.

B.Người ta trồng rau trên thửa ruộng ,cứ 2m vuông thu được 6kg .Tính số rau thu được

11 tháng 5 2017

Bài 2:

a, S = 1/11 + 1/12 + .. +1/20 với 1/2

SỐ số hạng tổng S: [20 - 11]: 1 + 1 = 10 số

mà 1/11 > 1/20

      1/12 > 1/20

.........................

      1/20 = 1/20

=> 1/11 + 1/12 + ... + 1/20 > 1/20 . 10 => S > 1/2

b, B = 2015/2016 + 2016/2017 và C = 2015+2016/2016+2017

Dễ dàng ta thấy: C = 4031/4033 < 1

B = 2015/2016 + 2016/2017

B = 2015/2016 + [1/2016 + 4062239/4066272]

B = [2015/2016 + 1/2016] + 4062239/4066272]

B = 1 +4062239/4066272

=> B > 1 

Vậy B > C

c, [-1/5]^9 và [-1/25]^5

ta có: 255 = [52]5 = 52.5 = 510 > 59

=> [1/5]9 > [1/25]5

=> [-1/5]9 < [-1/25]5

d, 1/32+1/42+1/52+1/62 và 1/2

ta có: 1/3^2 + 1/4^2 + 1/5^2 + 1/6^2 = 1/9 + 1/16 + 1/25 + 1/36

mà: 1/9 < 1/8

      1/16 < 1/8

      1/25 < 1/8

      1/36 < 1/8

=> 1/9+1/16+1/25+1/36 < 1/2

Vậy 1/32+1/42+1/52+1/62 < 1/2

11 tháng 5 2017

Bài 1:

A = 3/4 . 8/9 . 15/16....2499/2500

A = [1.3/22][2.4/32]....[49.51/502]

A = [1.2.3.4.5...51 / 2.3.4....50][3.4.5...51 / 2.3.4...50]

A = 1/50 . 51/2

A = 51/100

B = 22/1.3 + 32/2.4 + ... + 502/49.51

B = 4/3.9/8....2500/2499

Nhận thấy B ngược A => B = 100/51 [cách tính tương tự tính A]

Bài 2:

a. S = 1/11+1/12+...+1/20 và 1/2

Số số hạng tổng S: [20 - 11]: 1 + 1 = 10 [ps]

ta có: 1/11 > 1/20