\(\frac{1}{15}+\frac{1}{16}+\frac{1}{17}+...+\frac{1}{43}+\frac{1}{44}>...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 5 2016

Số lượng phân số của dãy số trên là:

                  (44-15):1+1=30 (phân số)

Ta chia dãy phân số thành 2 cặp. Mỗi cặp có 15 phân số

Ta có: 1/15+1/16+1/17+...+1/44>5/6

Lại có: 1/30<1/15;1/30<1/16;...;1/30<1/29

          1/45<1/30;1/45<1/31;...;1/45<1/44

=> 1/30.15+1/45.15 < 1/15+1/16+1/17+...+1/44

=> 15.(1/30+1/45)< 1/15+1/16+1/17+...+1/44

=> 15.1/18< 1/15+1/16+1/17+...+1/44

=> 5/6 < 1/15+1/16+1/17+...+1/44 (đpcm)

2 tháng 5 2016

A> 1/29+1/29+......1/29+1/44+1/44.....+1/44 
A> 15 x 1/29 + 15 x 1/44 
Suy ra: (dựa vào tính chất hai phân số có cùng tử số phân số nào có mẫu số lớn hơn thì phân số đó nhỏ hơn) 
A> 15 x 1/30 +15 x 1/45 
A>1/2 +1/3 
A> 5/6

Nhớ nhé

31 tháng 8 2017

\(3\frac{14}{19}+\frac{13}{17}+\frac{35}{43}+6\)

\(=\frac{71}{19}+\frac{13}{17}+\frac{35}{43}+6\)

\(=\frac{1454}{323}+\frac{35}{43}+6\)

\(=5,...+6\)

\(=11,...\)

3 tháng 7 2018

\(Bai2a\)\(A=\frac{\sqrt{3}-\sqrt{6}}{1-\sqrt{2}}-\frac{2+\sqrt{8}}{1+\sqrt{2}}\)

\(=\frac{\sqrt{3}\left(1-\sqrt{2}\right)}{1-\sqrt{2}}-\frac{2\left(1+\sqrt{2}\right)}{1+\sqrt{2}}\)

\(=\sqrt{3}-2\) 

\(VayA=\sqrt{3}-2\)

2 tháng 5 2017

a, \(\frac{1}{5}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{61}+\frac{1}{62}+\frac{1}{63}=\frac{1}{5}+\left(\frac{1}{13}+\frac{1}{14}+\frac{1}{15}\right)+\left(\frac{1}{61}+\frac{1}{62}+\frac{1}{63}\right)\)

Ta có: \(\frac{1}{13}< \frac{1}{12};\frac{1}{14}< \frac{1}{12};\frac{1}{15}< \frac{1}{12}\Rightarrow\frac{1}{13}+\frac{1}{14}+\frac{1}{15}< \frac{1}{12}+\frac{1}{12}+\frac{1}{12}=\frac{3}{12}=\frac{1}{4}\)

\(\frac{1}{61}< \frac{1}{60};\frac{1}{62}< \frac{1}{60};\frac{1}{63}< \frac{1}{60}\Rightarrow\frac{1}{61}+\frac{1}{62}+\frac{1}{63}< \frac{1}{60}+\frac{1}{60}+\frac{1}{60}=\frac{3}{60}=\frac{1}{20}\)

\(\Rightarrow\frac{1}{5}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{61}+\frac{1}{62}+\frac{1}{63}< \frac{1}{5}+\frac{1}{4}+\frac{1}{20}=\frac{1}{2}\)

Vậy...

2 tháng 5 2017

b, Đặt A là tên của tổng trên

Ta có: \(A=\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{100^2}=\frac{1}{2^2}\left(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\right)\)

Đặt B là biêu thức trong ngoặc

Ta có: \(1=1;\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};....;\frac{1}{50^2}< \frac{1}{49.50}\)

\(\Rightarrow B< 1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)

\(\Rightarrow B< 1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)

\(\Rightarrow B< 2-\frac{1}{50}< 2\)

Thay B vào A ta được:

\(A< \frac{1}{2^2}.2=\frac{1}{2}\)

13 tháng 7 2018

Ta có:

\(\frac{1}{12}>\frac{1}{20}\)

\(\frac{1}{13}>\frac{1}{20}\)

\(\frac{1}{14}>\frac{1}{20}\)

......

\(\frac{1}{19}>\frac{1}{20}\)

\(\Rightarrow\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}+\frac{1}{17}+\frac{1}{18}+\frac{1}{19}\)\(>\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}\)

                                                                                                                   \(=\frac{8}{20}=\frac{2}{5}>\frac{1}{3}\)

\(\Rightarrow\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}+\frac{1}{17}+\frac{1}{18}+\frac{1}{19}>\frac{1}{3}\)