Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta nhận thấy rằng \(1986\)chia hết cho 3 nên \(1986^{2004}\)chia hết cho 9 suy ra \(1986^{2004}-1\)không chia hết cho 9.
Mặt khác \(1000\)chia cho 9 dư 1 nên \(1000^{2004}\).chia 9 dư 1 suy ra \(1000^{2004}-1\)chia hết cho 9.
Nhận xét rằng một phân số \(\frac{a}{b}\)là số nguyên khi a chia hết cho b. khi đó mọi ước của b đều là ước của a.
mà \(1986^{2004}-1\)không chia hết cho 9, \(1000^{2004}-1\)chia hết cho 9.
Vậy \(\frac{1986^{2004}-1}{1000^{2004}-1}\notin Z\)
\(A=\frac{1968^{2004}-1}{1000^{2004}-1}=\frac{1968}{1000}=\)\(1,986\)
Vì \(1,986\notin Z\)
\(\Rightarrow A=\frac{1986^{2004}-1}{1000^{2004}-1}\)không thể là số nguyên
làm sao để đánh p/s và số mũ như bạn vậy chỉ mình với
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=kb\\c=kd\end{cases}}\)
a) \(\frac{a^{2004}-b^{2004}}{a^{2004}+b^{2004}}=\frac{\left(kb\right)^{2004}-b^{2004}}{\left(kb\right)^{2004}+b^{2004}}=\frac{k^{2004}b^{2004}-b^{2004}}{k^{2004}b^{2004}+b^{2004}}=\frac{b^{2004}\left(k^{2004}-1\right)}{b^{2004}\left(k^{2004}+1\right)}=\frac{k^{2004}-1}{k^{2004}+1}\)(1)
\(\frac{c^{2004}-d^{2004}}{d^{2004}+d^{2004}}=\frac{\left(kd\right)^{2004}-d^{2004}}{\left(kd\right)^{2004}+d^{2004}}=\frac{k^{2004}d^{2004}-d^{2004}}{k^{2004}d^{2004}+d^{2004}}=\frac{d^{2004}\left(k^{2004}-1\right)}{d^{2004}\left(k^{2004}+1\right)}=\frac{k^{2004}-1}{k^{2004}+1}\)(2)
Từ (1) và (2) => đpcm
b) \(\frac{a^{2005}}{b^{2005}}=\frac{\left(kb\right)^{2005}}{b^{2005}}=\frac{k^{2005}b^{2005}}{b^{2005}}=k^{2005}\)(1)
\(\frac{\left(a-c\right)^{2005}}{\left(b-d\right)^{2005}}=\frac{\left(kb-kd\right)^{2005}}{\left(b-d\right)^{2005}}=\frac{\left[k\left(b-d\right)\right]^{2005}}{\left(b-d\right)^{2005}}=\frac{k^{2005}\left(b-d\right)^{2005}}{\left(b-d\right)^{2005}}=k^{2005}\)(2)
Từ (1) và (2) => đpcm
a)\(A=x^6-2007x^5+2007x^4-2007x^3+2007x^2-2007x+2007\)
Tại \(x=2006\) thì giá trị biểu thức \(A\) là:
\(A=2006^6-2007\cdot2006^5+...-2007\cdot2006+2007\)
\(=2006^6-\left(2006+1\right)\cdot2006^5+...-\left(2006+1\right)\cdot2006+2007\)
\(=2006^6-2006^6+2006^5-...-2006^2-2006+2007\)
\(=-2006+2007=1\)
b)Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)\(\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
Khi đó
\(VT=\dfrac{\left(bk\right)^{2004}-b^{2004}}{\left(bk\right)^{2004}+b^{2004}}=\dfrac{b^{2004}k^{2004}-b^{2004}}{b^{2004}k^{2004}+b^{2004}}=\dfrac{b^{2004}\left(k^{2004}-1\right)}{b^{2004}\left(k^{2004}+1\right)}=\dfrac{k^{2004}-1}{k^{2004}+1}\left(1\right)\)
\(VP=\dfrac{\left(dk\right)^{2004}-d^{2004}}{\left(dk\right)^{2004}+d^{2004}}=\dfrac{d^{2004}k^{2004}-d^{2004}}{d^{2004}k^{2004}+d^{2004}}=\dfrac{d^{2004}\left(k^{2004}-1\right)}{d^{2004}\left(k^{2004}+1\right)}=\dfrac{k^{2004}-1}{k^{2004}+1}\left(2\right)\)
Từ \((1) và (2)\) ta có điều phải chứng minh
c)Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:
\(A=\left|x-2004\right|+\left|x-1\right|=\left|2004-x\right|+\left|x-1\right|\)
\(\ge\left|2004-x+x-1\right|=2003\)
Đẳng thức xảy ra khi \(1\le x\le2004\)
Vậy với \(1\le x\le2004\) thì \(A_{Min}=2003\)
Ta có: \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)
Áp dụng vào bài toán \(\left|x-2004\right|+ \left|x-1\right|\ge\left|x-2004+1-x\right|=2003\)
Dấu "=" xảy ra khi \(\left(x-2004\right)\left(1-x\right)\ge0\)
.....