Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi 2k và 2k+2 là 2 số chẵn liên liếp, ta có
2k.(2k+2)=4k^2+4k=4k(k+1)
Ta có k(k+1) luôn luôn chia hết cho 2
=> 4. k.(k+1) chia hết cho 2.4=8
Vậy 4k(k+1)chia hết cho 8
=> 2 số chẵn liên tiếp luôn chia hết cho 8
hok tốt nha
Gọi số chẵn thứ nhất là 2k ( k ∈ Z )
=> Số chẵn còn lại : 2k + 2
=> Ta có tích của hai số : 2k(2k + 2 )
= 2k.2k + 2k.2
= 4k2 + 4k
= 4k ( k + 1 )
k ∈ Z khi chia cho 2 luôn có hai số dư là 0 và 1
=> k ∈ { 2n ; 2n + 1 } ( n ∈ Z )
Nếu k = 2n
=> 4k ( k + 1 ) = 4.2n ( 2n + 1 )
= 8n ( 2n + 1 ) ⋮ 8
Nếu k = 2n + 1
=> 4k ( k + 1 ) = 4( 2n + 1 ) [ ( 2n + 1 ) + 1 ]
= 4 ( 2n + 1 ) ( 2n + 2 )
= 8 ( 2n + 1 ) ( n + 1 ) ⋮ 8
\(\Rightarrow4k\left(k+1\right)⋮8\forall k\in Z\)
Vậy tích của hai số chẵn liên tiếp chia hết cho 8 ( đpcm ).
scjb
l
lbjsc
jlb jkscd
l D
kc K
đsdCBU
osdob
jvjob
sadvkj
bsd
jkbvdsl
kn
kjbsđ jbo
jkb bjk
ưởqvbuob
khr
wibuvibu
dhoidwhouvwouhdvbiowdobvvudsukhc
owdo
hfdauovoibadPhuo
Ta gọi 2 số chẵn liên tiếp đó là: 2k và 2k+2
Ta có:2k.(2k+2)
=4k^2 .4k
=4k.(k+1)
TH1:k chẵn
=>k chia hết cho 2
=>4k chia hết cho 8
=>4k.(k+1) chia hết cho 8
TH2: k lẻ
=>k+1 chia hết co 2
=> 4k .(k+1) chia hết cho 8
a) \(A=2^1+2^2+2^3+...+2^{12}\)
\(=\left(2^1+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{11}+2^{12}\right)\)
\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{11}\left(1+2\right)\)
\(=3\left(2+2^3+...+2^{11}\right)⋮3\)
b) \(A=2^1+2^2+2^3+...+2^{12}\)
\(=\left(2+2^2+2^3+2^4\right)+...+\left(2^9+2^{10}+2^{11}+2^{12}\right)\)
\(=2\left(1+2+2^2+2^3\right)+...+2^9\left(1+2+2^2+2^3\right)\)
\(=15\left(2+2^5+2^9\right)⋮5\)
c) \(A=2^1+2^2+2^3+...+2^{12}\)
\(=\left(2^1+2^2+2^3\right)+...+\left(2^{10}+2^{11}+2^{12}\right)\)
\(=2\left(1+2+2^2\right)+...+2^{10}\left(1+2+2^2\right)\)
\(=7\left(2+...+2^{10}\right)⋮7\)
Gọi 3 số tự nhiên liên tiếp đó là n-1, n, n+1 (n thuộc N*)
Ta phải chứng minh A = (n-1)n(n+1) chia hết cho 6
n-1 và n là 2 số tự nhiên liên tiếp nên 1 trong 2 số phải chia hết cho 2
=> A chia hết cho 2
n-1, n và n+1 là 3 số tự nhiên liên tiếp nên 1 trong 3 số phải chia hết cho 3 => A chia hết cho 3
Mà (2; 3) = 1 (2 và 3 nguyên tố cùng nhau) => A chia hết cho 2. 3 = 6 (đpcm)
Trong ba số tự nhiên liên tiếp, luôn có một số chia hết cho 2 và một số chia hết cho 3 nên tích của ba số đó sẽ chia hết cho 6
Gọi 3 số tự nhiên liên tiếp là a;a+1 và a+2
Tích 3 số đó là: a(a+1)(a+2)= a+a+a+1+2
= 3a+ 3
Vì 3a chia hết cho3; 3 chia hết cho 3 nên 3a+3 chia hết cho 3
=> a(a+1)(a+2) chia hết cho 3
- Nếu a chẵn thì a(a+1)(a+2) chia hết cho 2
-Nếu a lẻ thì a+1 chia hết cho 2=> a(a+1)(a+2)
Vậy a(a+1)(a+2) chia hết cho 2
Mặt khác (2,3)=1 nên a(a+1)(a+2) chia hết cho 6
Gọi 3 STN liên tiếp n, n+1 , n+2
n(n+1)(n+2)
Với n=2k
2k(2k+1)(2k+2) chia hết 2
Với n=2k+1
(2k+1)(2k+2)(2k+3)=(2k+1).2(k+1)(2k+3) chia hết 2
=> n(n+1)(n+2) chia hết 2 (1)
Với n=3k
3k(3k+1)(3k+2) chia hết 3
Với n=3k+1
(3k+1)(3k+2).3(k+1) chia hết cho 3
Với n=3k+2
(3k+2)(3k+3)(3k+4) chia hết 3
=> n(n+1)(n+2) chia hết cho 3 (2)
(1);(2)=> n(n+1)(n+2) chia hết 6
bạn hãy áp dụng công thức này mà làm: k.(k+1)....(k+n) luôn chia hết cho 1,2,...,n+1 biết k và n là số nguyên
gọi 2 số chẵn liên tiếp đó là: 2k,2k+2
2k.(2k+2)=4k(k+1) mà k(k+1) chia hết cho 2 suy ra 2k.(2k+2) chia hết cho 8
gọi 3 số chẵn liên tiếp đó là: 2k,2k+2,2k+4
2k.(2k+2)(2k+4)=8k(k+1)(k+2) mà k(k+1) chia hết cho 2 suy ra 2k.(2k+2)(2k+4) chia hết cho 16 (1)
k(k+1)(k+2) chia hết cho 3 suy ra 8k(k+1)(k+2) chia hết cho 3 suy ra 2k.(2k+2)(2k+4) chia hết cho 3 (2)
từ (1),(2) suy ra 2k.(2k+2)(2k+4) chia hết cho 48 do (16,3)=1
câu c, tương tự vậy
Gọi 2 số chẵn liên tiếp là 2k và 2k + 2 (k \(\in\) Z)
Xét 2k(2k + 2) = 4k(k + 1)
Vì 4 chia hết cho 4; k(k + 1) chia hết cho 2 (tích 2 số chẵn liên tiếp)
=> 4k(k + 1) chia hết cho 8
hay 2k(2k + 2) chia hết cho 8
Vậy tích của 2 số nguyên liên tiếp chia hết cho 8
Gọi 2 số chẵn liên tiếp là 2k;2k+2( k thuộc N )
Ta có tích bằng :
2k.(2k+2)=4k2+4k=4k(k+1) chia hết cho 8 ( vì k(k+1) chia hết cho 2 ; 4 chia hết cho 4 )