\(\frac{1}{2^2}\)+\(\frac{1}{3^2}\)+...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 8 2020

a) Ta có: \(\frac{1}{2^2}< \frac{1}{1.2}\) ; \(\frac{1}{3^2}< \frac{1}{2.3}\) ; \(\frac{1}{4^2}< \frac{1}{3.4}\) ; ... ; \(\frac{1}{2010^2}< \frac{1}{2009.2010}\)

=> \(Vt< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2009.2010}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2009}-\frac{1}{2010}\)

\(=1-\frac{1}{2010}< 1\)

4 tháng 4 2018

\(a)\) Ta có : 

\(\frac{1}{100}A=\frac{100^{2009}+1}{100^{2009}+100}=\frac{100^{2009}+100}{100^{2009}+100}-\frac{99}{100^{2009}+100}=1-\frac{99}{100^{2009}+100}\)

\(\frac{1}{100}B=\frac{100^{2010}+1}{100^{2010}+100}=\frac{100^{2010}+100}{100^{2010}+100}-\frac{99}{100^{2010}+100}=1-\frac{99}{100^{2010}+100}\)

Vì \(\frac{99}{100^{2009}+100}>\frac{99}{100^{2010}+100}\) nên \(1-\frac{99}{100^{2009}+100}< 1-\frac{99}{100^{2010}+100}\)

Do đó : 

\(\frac{1}{100}A< \frac{1}{100}B\)\(\Rightarrow\)\(A< B\)

Vậy \(A< B\)

Chúc bạn học tốt ~ 

a Tìm x , biết : 1\(\frac{3}{5}\) + [ \(\frac{\frac{2}{7}+\frac{2}{17}+\frac{2}{37}}{\frac{5}{7}+\frac{5}{17}+\frac{5}{37}}\)]  x = \(\frac{16}{5}\) b Chứng minh rằng số tự nhiên A chia hết cho 2009 , với A =   1 . 2 .3 ... 2007 . 2008 ( 1 + \(\frac{1}{2}\) + ... + \(\frac{1}{2007}\)+ \(\frac{1}{2008}\))                                                                           Giảia...
Đọc tiếp

a Tìm x , biết : 1\(\frac{3}{5}\) + [ \(\frac{\frac{2}{7}+\frac{2}{17}+\frac{2}{37}}{\frac{5}{7}+\frac{5}{17}+\frac{5}{37}}\)]  x = \(\frac{16}{5}\) 

b Chứng minh rằng số tự nhiên A chia hết cho 2009 , với 

A =   1 . 2 .3 ... 2007 . 2008 ( 1 + \(\frac{1}{2}\) + ... + \(\frac{1}{2007}\)\(\frac{1}{2008}\))

                                                                           Giải

a 1\(\frac{3}{5}\)+ (\(\frac{\frac{2}{7}+\frac{2}{17}+\frac{2}{37}}{\frac{5}{7}+\frac{5}{17}+\frac{5}{37}}\)) x = \(\frac{16}{5}\)\(\Leftrightarrow\) \(\frac{8}{5}\)+ [\(\frac{2\left(\frac{1}{7}+\frac{1}{17}+\frac{1}{37}\right)}{5\left(\frac{1}{7}+\frac{1}{17}+\frac{1}{37}\right)}\)x = \(\frac{16}{5}\)

\(\Leftrightarrow\)\(\frac{8}{5}\) + \(\frac{2}{5}\)x = \(\frac{16}{5}\)\(\Leftrightarrow\)\(\frac{2}{5}\)x = \(\frac{16}{5}\)\(-\)\(\frac{8}{5}\) \(\Leftrightarrow\) x = \(\frac{2}{5}\)\(\Leftrightarrow\)\(\frac{8}{5}\) : \(\frac{2}{5}\)\(\Leftrightarrow\)x=4

b 1 + \(\frac{1}{2}\)\(\frac{1}{3}\)+ ... + \(\frac{1}{2007}\)\(\frac{1}{2008}\) 

 = (1 + \(\frac{1}{2008}\))  + (\(\frac{1}{2}\)\(\frac{1}{2007}\)) + ... + (\(\frac{1}{2004}\)\(\frac{1}{2005}\)

= (1 + \(\frac{1}{2008}\)) + (\(\frac{1}{2}\)\(\frac{1}{2007}\)) + ... + (\(\frac{1}{1004}\)\(\frac{1}{1005}\))

\(\frac{2009}{1\times2008}\) + \(\frac{2009}{2\times2007}\) +  ... + \(\frac{2009}{1004\times1009}\) 

= 2009(\(\frac{1}{1\times2008}\) + \(\frac{1}{2\times2007}\)+ ... + \(\frac{1}{1004\times1005}\)

Do đó A = 1 . 2 .3 ... 2007 . 2008 . (1 + \(\frac{1}{2}\) + \(\frac{1}{3}\) + ... + \(\frac{1}{2007}\)\(\frac{1}{2008}\))

             = 2009(1 . 2 . 3 ... 2007 . 2008 (\(\frac{1}{1.2008}\) + \(\frac{1}{2.2007}\)+ ... + \(\frac{1}{1004.1005}\) ) \(⋮\) 2009

Vì 1 . 2 . 3 ... 1007 . 2008 (\(\frac{1}{1.2008}\) + \(\frac{1}{2.2007}\) + ... + \(\frac{1}{2004.2005}\)) là một số tự nhiên 

CÁC BẠN CÓ AI GIỐNG CÁCH LÀM CỦA MÌNH THÌ TRẢ LỜI NHÉ

1
8 tháng 5 2017

mk nghĩ là bn làm đúng đó !

26 tháng 5 2018

1.

\(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{99}}+\frac{1}{2^{100}}+\frac{1}{2^{100}}\)

\(=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}+\left(\frac{1}{2^{100}}+\frac{1}{2^{100}}\right)\)

\(=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}+\frac{1}{2^{99}}\)

cứ làm như vậy ta được :

\(=1+1=2\)

26 tháng 5 2018

2. Ta có :

\(\frac{2008+2009}{2009+2010}=\frac{2008}{2009+2010}+\frac{2009}{2009+2010}\)

vì \(\frac{2008}{2009}>\frac{2008}{2009+2010}\)\(\frac{2009}{2010}>\frac{2009}{2009+2010}\)

\(\Rightarrow\frac{2008}{2009}+\frac{2009}{2010}>\frac{2008+2009}{2009+2010}\)

5 tháng 3 2019

19A=192010+19/192010+1=192010+1+18/192010+1=192010+1/192010+1+18/192010+1=1+18/192010

19B=192009+19/192009+1=192009+1+18/192009+1=192009+1/192009+1+18/192009+1=1+18/192009

Vậy A<B

Xin lỗi mình chịu câu trên

5 tháng 3 2019

Ta có A=\(\frac{19^{2009}+1}{19^{2010}+1}\)                                    Ta có:B=\(\frac{19^{2008}+1}{19^{2009}+1}\)

                                                                               19B=\(\frac{19^{2009}+19}{19^{2009}+1}\)

      19A=\(\frac{19^{2010}+19}{19^{2010}+1}\)                                       19B=\(\frac{19^{2009}+1+18}{19^{2009}+1}\)

      19A=\(\frac{19^{2010}+1+18}{19^{2010}+1}\)                                19B=\(1+\frac{18}{19^{2009}+1}\)

      19A=\(1+\frac{18}{19^{2010}+1}\)

                         Vì \(\frac{18}{19^{2010}+1}< \frac{18}{19^{2009}+1}\)nên \(19A< 19B\)

                          \(\Leftrightarrow A< B\)

                            Vậy\(A< B\)

15 tháng 2 2017

\(Cm:\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2009^2}< 1\)

Có : \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2009^2}< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{2008\cdot2009}\)

\(\Leftrightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2009^2}< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2008}-\frac{1}{2009}\)

\(\Leftrightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2009^2}< \frac{1}{1}-\frac{1}{2009}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2009^2}< \frac{2008}{2009}\left(1\right)\)

\(\frac{2008}{2009}< 1\left(2\right)\)

\(\left(1\right),\left(2\right)\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2009^2}< \frac{2008}{2009}< 1\)

\(\Leftrightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2009^2}< 1\left(đpcm\right)\)

15 tháng 2 2017

\(\frac{1}{2^2}+\frac{1}{3^2}+....+\frac{1}{2009^2}< \frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{2008.2009}\\ =\frac{1}{1}-\frac{1}{2009}< 1\left(\text{đ}pcm\right)\)

15 tháng 2 2017

mình làm rùi kết bạn với mình đi mình bảo

28 tháng 9 2019

Tham khảo:

undefined