Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a)
gọi 3 STN liên tiếp là a ;a+1;a+2
=>a+a+1+a+2=a+a+a+1+2=3a+3=3(a+1) chia hết cho 3
=> .. có
b)
gọi 4 STN liên tiếp là a;a+1;a+2;a+3
=>a+a+1+a+2+a+3=a+a+a+a+6=4a+6
=> ko chia hết cho 4
![](https://rs.olm.vn/images/avt/0.png?1311)
A, CÓ
B,KHÔNG
C,GOI BA SO TU NHIEN LIEN TIEP LA A,A+1, A+2,
(a+a+a)+ (1+2)
3a+3 chia hết cho 3
vi 3chia hết cho 3
vậy tổng 3 số tự nhiên liên tiếp chia hết cho 3
gọi 4 số tự nhiên liên tiếp là a,á+1,a+2,a+3
(a+a+a+a)+(1+2+3)
4a+6 không chia hết cho 3 vì 4 không chia hết cho 3
vậy tổng 4 số tự nhiên liên tiếp không chia hết cho 3
![](https://rs.olm.vn/images/avt/0.png?1311)
d,
Gọi 4 số tự nhiên liên tiếp đó là k;k+1.k+2.k+3
nếu k chia hết cho 4 thì -> điều phài cm
nếu k chia cho 4 dư 1 thì k+3 chia hết cho 4 -> điều phài cm
nếu k chia cho 4 dư 2 thì k+2 chia hết cho 4 -> điều phài cm
nếu k chia cho 4 dư 3 thì k+1 chia hết cho 4 -> điều phài cm
c,
Gọi 3 số tự nhiên liên tiếp là a, a +1, a + 2 ( a thuộc N )
Ta xét 3 trường hợp :
TH1: a chia cho 3 dư 0
Suy ra : a chia hết cho 3
TH2: a chia cho 3 dư 1
Ta có : a = 3q + 1
a + 2 = 3q +1 + 2
a + 2 = 3q + 3
a + 2 = 3q + 3 .1
a + 2 = 3.(q + 1 )
Suy ra : a +2 chia hết cho 3
TH3 : a chia cho 3 dư 2
Ta có : a = 3q + 2
a + 1 = 3q +2 + 1
a + 1 = 3q + 3
a + 1 = 3q + 3 .1
a + 1 = 3.(q + 1)
Suy ra : a + 1 chia hết cho 3
Vậy trong 3 số tự nhiên liên tiếp có duy nhất 1 số chia hết cho 3
![](https://rs.olm.vn/images/avt/0.png?1311)
a) trung bình cộng của 3 số đó là a
tổng là b
ta có : 3a = b
suy ra b chia hết cho 3
a / Trong 3 số tự nhiên liên tiếp có 1 số CHC 3, 1 số chia 3 dư 1, 1 số chia 3 dư 2 .
Ta lấy hai số dư cộng lại => = 3 .
Nên 3 số tự nhiên liên tiếp bao giờ cũng chia hết cho 3 .
b/ Trong 4 số tự nhiên liên tiếp có 1 số chia hết cho 4, 1 số chia 4 dư 1 , 1 số chia 4 dư 2 , 1 số chia 4 dư 3 .
Ta lấy 3 số dư cộng lại = 6 mả :
6 ko chia hết cho 4 nên :
4 số tự nhiên liên tiếp ko bao giờ chia hết cho 4 .
![](https://rs.olm.vn/images/avt/0.png?1311)
a. Gọi 3 số đó là a; a+1; a+2
Ta có: a+ a+1 + a+2 = 3a +3
3 chia hết cho 3 => 3a chia hết cho 3
=> 3a+3 chia hết cho 3
=> Tổng của 3 số tự nhiên liên tiếp luôn chia hết cho 3
Tương tự câu b, c, d nha
a) Xét 3 số tự nhiên liên tiếp a; a+1 ; a +2
Nếu a chia hết cho 3 thì a=3k (k thuộc N) khi đó a+1= 3k+1, còn a+2=3k+2 là những số không chia hết cho 3
Nếu a=3k+1 thì a+1=3k+2 không chia hết cho 3 còn a+2=3k+3 chia hết cho 3
Nếu a=3k+2 thì a+2=3k+4 không chia hết cho 4, còn a+1=3k+3 chia hết cho 3
![](https://rs.olm.vn/images/avt/0.png?1311)
a)gọi 3 số tự nhiên liên tiếp đó là :
k;k+1;k+2
tổng 3 số tự nhiên liên tiếp đó là: k+k+1+k+2
ta có
k+k+1+k+2
\(\Leftrightarrow\)k+(k+1)+(k+2)
\(\Leftrightarrow\)k.3+(1+2)
\(\Leftrightarrow\)k.3+3
vì k.3 chia hết cho 3 và 3 chia hết cho 3 nên k.3+3
\(\Rightarrow\)k+k+1+k+2 chia hết cho 3
Vậy tổng 3 số tự nhiên liên tiếp chia hết cho 3
b) gọi 4 số tự nhiên liên tiếp đó 4 là:
4;4+1;4+2;4+3
tổng của 4 số tự nhiên liên tiếp 4 là
k+k+1+k+2+k+3
ta có
k+k+1+k+2+k+3
\(\Leftrightarrow\)k+(k+1)+(k+2)+(k+3)
\(\Leftrightarrow\)k.4+(1+2+3)
\(\Leftrightarrow\)k.4+6
vì k.4 chia hết cho 4 nhưng 6 không chia hết cho 4 nên k.4+6 không chia hết cho 4
\(\Rightarrow\) k+k+1+k+2+k+3 không chia hết cho 4
vậy tổng 4 số tự nhiên ko chia hết cho 4
OH SORY BẠN VÌ CÂU b) MÌNH CHỈ LÀM ĐƯỢC CHỨNG MINH RẰNG TỔNG 4 SỐ TỰ NHIÊN LIÊN TIẾP KHÔNG CHIA HẾT CHO 4 THÔI
VÀ MK NGHĨ CÂU B ĐỀ SAi
![](https://rs.olm.vn/images/avt/0.png?1311)
1) b+5:7 ( dấu chia hết nha tại bàn phím k có dấu này nên k gõ đc) 2) 2k+1;2k+3 ; 2k+5 3) bốn số lẻ liên tiếp sẽ có dạng là: 2k+1; 2k+3;2k+5;2k+7 =) tổng của 4 số lẻ liên tiếp là: 2k+1+2k+3+2k+5+2k+7=8k+16 . mà 8k chia hết cho 8; 18 chia hết cho 8=)tổng của 2k+1; 2k+3;2k+5;2k+7 chia hết cho 8 hay tổng của 4 số lẻ liên tiếp luôn chia hết cho 8 (đpcm) 4) bốn số chẵn liên tiếp sẽ có dạng là : 2k;2k+2;2k+4;2k+6=) tổng của 4 số chẵn liên tiếp là 8k+12 mà 8k chia hết cho 8 nhưng 12 không chia hết cho 8 nên tổng của 2k:2k+2;2k+4;2k+6 không chia hết cho 8 hay tổng 4 số chẵn liên tiếp k chia hết cho 8(đpcm)