K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 7 2016

ap dung hang dang thuc

(a^3+b^3)+(a^3-b^3)=a^3+b^3+a^3-b^3=2a^3 (dpcm)

7 tháng 8 2018

a)  \(VT=\left(a+b\right)\left(a^2-ab+b^2\right)+\left(a-b\right)\left(a^2+ab+b^2\right)\)

           \(=a^3+b^3+a^3-b^3=2a^3=VP\)

b)  \(VT=a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)

           \(=\left(a+b\right)\left[\left(a^2-2ab+b^2\right)+ab\right]\)

          \(=\left(a+b\right)\left[\left(a-b\right)^2+ab\right]=VP\)

7 tháng 8 2018

\(a,\left(a+b\right)\left(a^2-ab+b^2\right)+\left(a-b\right)\left(a^2+ab+b^2\right)\)

\(=a^3+b^3+a^3-b^3=2a^3\left(ĐPCM\right)\)

\(b,a^3+b^3\)

\(=\left(a+b\right)\left(a^2-ab+b^2\right)\)

\(\left(a+b\right)\left(a^2-2ab+b^2+ab\right)\)

\(=\left(a+b\right)\left[\left(a-b\right)^2+ab\right]\left(ĐPCM\right)\)

16 tháng 8 2016

đề phần a thừa số 2

 

16 tháng 8 2016

thảo nào k ra

30 tháng 8 2017

Ta có:

\(VT=\left(a+b\right)\left(a^2-ab+b^2\right)+\left(a-b\right)\left(a^2+ab+b^2\right)\)

\(=a^3+b^3+a^3-b^3=2a^3=VP\)

Vậy \(\left(a+b\right)\left(a^2-ab+b^2\right)+\left(a-b\right)\left(a^2+ab+b^2\right)=2a^3\) (đpcm)

Chúc bạn học tốt!!!

29 tháng 6 2017

b, ta có a3+ b3 = (a+b)(a2-ab +b2)

= (a+b)(a2 -ab +b2 -ab +ab)

= (a+b) ( a2-2ab +b +ab)

=(a+b) [ (a2-b2) +ab ]

vậy ...........................

29 tháng 6 2017

câu a bạn sai đề à

10 tháng 3 2020

a2 + b2 + c2 = ab + bc + ca 

<=>  2a^2 + 2b^2 + 2c^2 = 2ab + 2bc + 2ca

<=>  2a^2 + 2b^2 + 2c^2 - 2ab - 2bc - 2ca = 0

<=> (a - b)^2 + (b - c)^2 + (c - a)^2 = 0

<=>  a - b = 0 và b - c = 0 và c - a = 0

<=>  a = b và b = c

<=>  a = b = c

b, a2 – 2a + b2 + 4b + 4c2 – 4c + 6 = 0

<=> (a^2 - 2a + 1) + (b^2 + 4b + 4)  + (4c^2 - 4c + 1) = 0

<=> (a - 1)^2 + (b + 2)^2 + (2c - 1)^2 = 0

<=> a - 1 = 0 và b + 2 = 0 và 2c - 1 = 0 

<=> a = 1 và b = - 2 và c = 1/2

29 tháng 5 2017

a) VT = (a+b)(\(a^2-ab+b^2\)) + \(\left(a-b\right)\left(a^2+ab+b^2\right)=a^3+b^3\)\(+a^3-b^3\) = \(2a^3=VP\) (đpcm)

b, VP =\(\left(a+b\right)\left[\left(a-b\right)^2+ab\right]=\left(a+b\right)\left[a^2-2ab+b^2+ab\right]=\left(a+b\right)\left(a^2-ab+b^2\right)=a^3+b^3=VT\left(đpcm\right)\)

c, Ta có : \(VT=\left(a^2+b^2\right)\left(c^2+d^2\right)=a^2c^2+a^2d^2+b^2c^2+b^2d^2\)(1)

\(VP=\left(ac+bd\right)^2+\left(ad-bc\right)^2=a^2c^2+2acbd+b^2d^2+a^2d^2-2adbc+b^2c^2=a^2c^2+b^2d^2+a^2d^2+b^2c^2\) (2)

Từ (1) và (2), ta có \(\left(a^2+b^2\right)\left(c^2+d^2\right)=\left(ac+bd\right)^2+\left(ad-bc\right)^2\left(đpcm\right)\)

29 tháng 5 2017

a)

\( (a + b)(a^2 - ab + b^2) + (a - b)(a^2 + ab + b^2) = 2a^3 = a^3 + b^3 + a^3 - b^3 = 2a^3\)

b)

\(a^3 + b^3 = (a + b)(a^2 - ab + b^2) = (a + b)(a^2 - (2ab - ab) + b^2) = (a + b)(a^2 - 2ab + b^2 + ab) = (a + b)[(a - b)^2 + ab] \)

20 tháng 12 2014

Ta có a3b+ab3+2a2b2+2a+2b+1=0

        <=>a2+b2+2ab+2a+2b+1=-(a3b+ab3+2a2b2)+a2+b2+2ab

           <=>(a+b+1)2=-ab(a+b)2-(a+b)2

        <=>(a+b+1)2=(a+b)2(1-ab)

Nếu a+b=0 thì =>1=(1-ab)0=0(vô lí)

Nếu a+b khác 0:

 Vì a,b là 2 số hữu tỉ =>(a+b+1)2 và (a+b)2 là bình phương của một số hữu tỉ 

=>1-ab là bình phương của một số hữu tỉ

=>đpcm

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3 tháng 12 2017

Ta có a3b+ab3+2a2b2+2a+2b+1=0

        <=>a2+b2+2ab+2a+2b+1=-(a3b+ab3+2a2b2)+a2+b2+2ab

           <=>(a+b+1)2=-ab(a+b)2-(a+b)2

        <=>(a+b+1)2=(a+b)2(1-ab)

Nếu a+b=0 thì =>1=(1-ab)0=0(vô lí)

Nếu a+b khác 0:

 Vì a,b là 2 số hữu tỉ =>(a+b+1)2 và (a+b)2 là bình phương của một số hữu tỉ 

=>1-ab là bình phương của một số hữu tỉ

=>đpcm