Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$a^5+b^5+c^5=(a^5-a)+(b^5-b)+(c^5-c)+(a+b+c)$
Giờ ta sẽ cmr với mọi số nguyên $x$ nào đó, $x^5-x\vdots 5$
Thật vậy:
$x^5-x=x(x^4-1)=x(x^2-1)(x^2+1)$
Nếu $x$ chia hết cho $5$ thì hiển nhiên $x^5-x\vdots 5$
Nếu $x$ không chia hết cho $5$: Do tính chất 1 số chính phương khi chia cho $5$ dư $0,1,4$, mà $x\not\vdots 5$ nên $x^2$ chia $5$ dư $1$ hoặc $4$.
+ Khi $x^2$ chia $5$ dư $1$ thì $x^2-1\vdots 5\Rightarrow x^5-x=x(x^2-1)(x^2+1)\vdots 5$
+ Khi $x^2$ chia $5$ dư $4$ thì $x^2+1\vdots 5\Rightarrow x^5-x=x(x^2-1)(x^2+1)\vdots 5$
Vậy tóm lại $x^5-x\vdots 5, \forall x\in\mathbb{Z}$
Áp dụng vào bài toán:
$a^5-a\vdots 5; b^5-b\vdots 5; c^5-c\vdots 5; a+b+c\vdots 5$
$\Rightarrow a^5+b^5+c^5\vdots 5$
1) a, Chứng minh a^5-a chia hết cho 5
b, Chứng minh a^7-a chia hết cho 7
Ta có: (a^5-a)= a(a^4-1)
= a(a^2-1)(a^2+1)
= a(a-1)(a+1)(a^2+1)
= a(a-1)(a+1)(a^2-4+5)
= a(a-1)(a+1)(a-2)(a+2) + 5a(a-1)(a+1)
Do a(a-1)(a+1)(a-2)(a+2) là tích 5 số tự nhiên liên tiếp => chia hết cho 2,3,5 => chia hết cho 2.3.5=30
5a(a-1)(a+1) chia hết cho 2,3,5 => chia hết cho 2.3.5=30
=> a^5-a chia hết cho 30
=> (a^5-a)+(b^5-b)+(c^5-c) chia hết cho 30
Mà a+b+c chia hết cho 30
=> a^5+b^5+c^5 chia hết cho 30
a, Ta có \(5^6 - 10^4 = 5^6-(2.5)^4 =5^6 -2^4.5^4 =5^4 (5^2 -2^4) =5^4 ( 25 -16) =5^4 . 9 \)
a)
b) đặt A=a^5b-ab^5=a(a^4b-b^5)=a(b(a^4-b^4))=ab... chia hết cho 2 (1)
+) Nếu a,b đồng du khi chia cho 3 thi a-b chia het cho 3 suy ra A chia het cho 3 (2)
+) Nếu a,b ko dong du khi chia cho 3 thi a+b chia het cho 3 suy ra Âchi het cho 3 (3)
Tu (2),(3) suy ra A luon chia het cho 3 (4)
Ma ab(a-b)(a+b)(a^2+b^2) chia het cho 5 (5)
Tu (1),(4),(5) suy ra A chia het cho 2;3;5 Vậy A chia het cho 30
Xét hiệu \(\left(x^5+y^5+z^5\right)-\left(x+y+z\right)=\left(x^5-x\right)+\left(y^5-y\right)+\left(z^5-z\right)\)
Ta có: \(\hept{\begin{cases}x^5-x⋮30\\y^5-y⋮30\\z^5-z⋮30\end{cases}}\) (tự chứng minh)
=>\(\left(x^5-x\right)+\left(y^5-y\right)+\left(z^5-z\right)⋮30\)
Mặt khác \(x+y+z⋮30\)
=>\(x^5+y^5+z^5⋮30\) (đpcm)
a) \(A=a^3b-ab^3=\left(a^3b-ab\right)-\left(ab^3-ab\right)\)
\(=b.a\left(a^2-1\right)-a\left(b^3-b\right)\)
\(=a\left(a-1\right)\left(a+1\right)b-a\left(b-1\right)b\left(b+1\right)\)
\(Do:\)\(a-1\) \(;\)\(a\) \(;\) \(a+1\) là 3 số liên tiếp nên :
\(\left(a-1\right)a\left(a+1\right)\) \(⋮6\)
Tương tự : \(\left(b-1\right)b\left(b+1\right)\) \(⋮6\)
\(\Rightarrow\) \(A\) \(⋮\)\(6\)
Ta có: a^5 - a = a(a^4 - 1) = a(a² - 1)(a² + 1) = a(a - 1)(a + 1)(a² + 1)
= a(a - 1)(a + 1)(a² - 4 + 5)
= a(a - 1)(a + 1)[ (a² - 4) + 5) ]
= a(a - 1)(a + 1)(a² - 4) + 5a(a - 1)(a + 1)
= a(a - 1)(a + 1)(a - 2)(a + 2) + 5a(a - 1)(a + 1)
= (a - 2)(a - 1)a(a + 1)(a + 2) + 5a(a - 1)(a + 1)
Do (a - 2)(a - 1)a(a + 1)(a + 2) là tích của 5 số nguyên liên tiếp => (a - 2)(a - 1)a(a + 1)(a + 2) chia hết cho 5 mà 5a(a - 1)(a + 1) chia hết cho 5
=> (a - 2)(a - 1)a(a + 1)(a + 2) + 5a(a - 1)(a + 1) chia hết cho 5.
=> a^5 - a chia hết cho 5
Mà a^5 chia hết cho 5 => a chia hết cho 5.
( Nếu a không chia hết cho 5 thì a^5 - a không chia hết cho 5 vì a^5 chia hết cho 5)
b) Chứng minh rằng nếu (5n + 1) là số chẵn thì n là số lẻ.
Giải: Nếu 5n + 1 là số chẵn thì =>
5n + 1 có dạng 2k (k là số tự nhiên)
=> 5n + 1 = 2k
=> 5n = 2k - 1
Do 2k - 1 là số lẻ => 5n là số lẻ (1)
Nếu n là số chẵn thì 5n chẵn =>
=> n phải là số lẻ
cái này lp 8 học hằng đẳng thức thì ra hoy