K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 11 2015

A=(2+2^2+2^3)+...+(2^13+2^14+2^15)

=14+...+2^13X(2+2^2+2^3)

=14+...+2^13x14

=>A chia het cho 7

tick minh nha bai nay sang nay minh moi lam duoc 10

17 tháng 11 2015

=2[+1+2+4]+24[1+2+4].....+213[1+2+4]

=2.7+24.7+..+213.7

=[2+24+27+..+213].7chia hết cho 7

 

14 tháng 10 2018

a) Ta có: \(A=3+3^3+3^5+...+3^{1991}\)

\(=\left(3+3^3+3^5\right)+\left(3^7+3^9+3^{11}\right)+...+\left(3^{1987}+3^{1989}+3^{1991}\right)\)

\(=3\times\left(1+3^2+3^4\right)+3^7\times\left(1+3^2+3^4\right)+...+3^{1987}\times\left(1+3^2+3^4\right)\)

\(=3\times91+3^7\times91+...+3^{1987}\times91\)

\(=3\times7\times13+3^7\times7\times13+...+3^{1987}\times7\times13\)

\(=13\times\left(3\times7+3^7\times7+...+3^{1987}\times7\right)\)

Vì \(A=13\times\left(3\times7+3^7\times7+...+3^{1987}\times7\right)\)nên A chia hết cho 13.

b) Ta có: \(A=3+3^3+3^5+...+3^{1991}\)

\(=\left(3+3^3+3^5+3^7\right)+...+\left(3^{1985}+3^{1987}+3^{1989}+3^{1991}\right)\)

\(=3\times\left(1+3^2+3^4+3^6\right)+...+3^{1985}\times\left(1+3^2+3^4+3^6\right)\)

\(=3\times820+...+3^{1985}\times820\)

\(=3\times20\times41+...+3^{1985}\times20\times41\)

\(=41\times\left(3\times20+...+3^{1985}\times20\right)\)

Vì \(A=41\times\left(3\times20+...+3^{1985}\times20\right)\)nên A chia hết cho 41.

27 tháng 10 2019

a=2^16-1 chia hết cho 2^5-1 =31

Có A=2+22+23+...+215 

=> A = ( 2 + 22 + 2+ 24 + 25 ) + ... + (  211 + 212 + 213 + 214+215 ) 

=> A = 2 . ( 1 + 2 + 22 + 23 + 24 ) + ... + 211 . ( 1 + 2 + 22 + 23 + 24 ) 

=> S = 2 . 31 + ... + 211. 31 

=> S = 31 . ( 2 + .. + 211 ) \(⋮\) 31

Vậy S chia hết cho 31 ( đpcm )

3 tháng 10 2016

Ta thấy A có: (2016-1)÷1+1=2016

Nhóm 2 số vào 1 nhóm ta dc:2016:2=1008

A=(2+2^2)+(2^3+2^4)+....+(2^2015+2^2016)

A=2.(1+2)+2^3.(1+2)+...+2^2015.(1+2)

A=2.3+2^3.3+.....+2^2015.3

A=3.(2+2^3+.....+2^2015)÷3

Vì  3÷3 nên 3.(2+2^3+....+2^2015) chia hết cho 3

Vậy A chia hết cho 3

Ý khác làm tương tự nha

12 tháng 8 2015

a)$10^{28}$1028 chia 9 dư 1 

8 chia 9 dư 8

1 + 8 = 9 chia hết cho 9

$\Rightarrow$⇒$10^{28}+8$1028+8 chia hết cho 9 (1)

$10^{28}$1028 chia hết cho 8 (vì có 3 chữ số tận cùng là 000 chia hết cho 8)

8 chia hết cho 8

$\Rightarrow$⇒$10^{28}+8$1028+8 chia hết cho 8 (2)

Từ (1) và (2) kết hợp với ƯCLN (8,9) = 1 . Suy ra $10^{28}+8$1028+8 chia hết cho 72

b)$8^8+2^{20}=\left(2^3\right)^8+2^{20}=2^{24}+2^{20}=2^{20}\times\left(2^4+1\right)=2^{20}\times17$88+220=(23)8+220=224+220=220×(24+1)=220×17 chia hết cho 17

27 tháng 11 2015

A=2+2^2+2^3+...+2^60

=(2+2^2)+(2^3+2^4)+...+(2^59+2^60)

=2(1+2)+2^3(1+2)+...+2^59(1+2)

=3(2+2^3+...+2^59) chia hết cho 3

A=2+2^2+2^3+...+2^60

=(2+2^2+2^3)+...+(2^58+2^59+2^60)

=2(1+2+2^2)+...+2^58(1+2+2^2)

=7(2+...+2^58) chia hết cho 7

A=2+2^2+2^3+...+2^60

=(2+2^2+2^3+2^4)+...+(2^57+2^58+2^59+2^60)

=2(1+2+2^2+2^3)+...+2^57(1+2+2^2+2^3)

=15(2+...+2^57) chia hết cho 15

 

a) Ta có: \(\overline{abcdeg}=\overline{ab}.1000+\overline{cd}.100+\overline{eg}\)

                               \(=\overline{ab}.999+\overline{cd}.99+\overline{ab}+\overline{cd}+\overline{eg}\)

                               \(=\left(\overline{ab}.999+\overline{cd}.99\right)+\left(\overline{ab}+\overline{cd}+\overline{eg}\right)\)

Vì \(\left(\overline{ab}.999+\overline{cd}.99\right)⋮11\)

và \(\left(\overline{ab}+\overline{cd}+\overline{cd}\right)⋮11\left(gt\right)\)

\(\Rightarrow\overline{abcdeg}⋮11\left(đpcm\right)\)

b) \(\cdot A=2+2^2+2^3+...+2^{60}\)

\(A=\left(2+2^2\right)+...+\left(2^{50}+2^{60}\right)\)

\(A=2.3+...+2^{50}.3\)

\(A=3\left(2+..+2^{50}\right)⋮3\)

các trường hợp còn lại tự lm nhé!!