Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/mình bó tay
2/Gọi d là ƯCLN(2n+3,3n+5)
Hay 3n+5-2n+3 chia hết cho d
Hay 2(3n+5)-3(2n+3) chia hết cho d
Hay 6n+10-6n+9 chia hết cho d
Hay 1 chia hết cho d
Hay d=1
Vậy 2n+3,3n+5 là 2 số nguyên tố cùng nhau
3/bó tay luôn
4/A=2+22+23+24+...+22009+22010
A=(2+22)+(23+24)+...+(22009+22010)
A=2(1+2)+23(1+2)+...+22009(1+2)
A=2.3+23.3+...+22009.3
A=3(2+23+...+22009) chia hết cho 3
Mặt khác:
A=(2+22+23)+(24+25+26)+...+22008+22009+22010
A=2(1+2+22)+24(1+2+22)+...+22008(1+2+22)
A=2.7+24.7+...22008(1+2+22)
A=7(2+24+...+22008) chia hết cho 7
1. \(A=2^{2016}-1\)
\(2\equiv-1\left(mod3\right)\\ \Rightarrow2^{2016}\equiv1\left(mod3\right)\\ \Rightarrow2^{2016}-1\equiv0\left(mod3\right)\\ \Rightarrow A⋮3\)
\(2^{2016}=\left(2^4\right)^{504}=16^{504}\)
16 chia 5 dư 1 nên 16^504 chia 5 dư 1
=> 16^504-1 chia hết cho 5
hay A chia hết cho 5
\(2^{2016}-1=\left(2^3\right)^{672}-1=8^{672}-1⋮7\)
lý luận TT trg hợp A chia hết cho 5
(3;5;7)=1 = > A chia hết cho 105
2;3;4 TT ạ !!
Vì 13 là lẻ \(\Rightarrow\) 13, 132, 133, 134, 135, 136 là lẻ.
Mà lẻ + lẻ + lẻ + lẻ + lẻ + lẻ = chẵn nên 13 + 132 + 133 + 134 + 135 + 136 là chẵn. \(\Rightarrow\) 13 + 132 + 133 + 134 + 135 + 136 \(⋮\) 2
\(\Rightarrow\) ĐPCM
\(A=2^0+2^1+2^2+...+2^{2004}\)
\(A=\left(2^0+2^1+2^2+2^3+2^4\right)+\left(2^5+2^6+2^7+2^8+2^9\right)+...+\left(2^{2000}+2^{2001}+2^{2002}+2^{2003}+2^{2004}\right)\)
\(A=\left(2^0+2^1+2^2+2^3+2^4\right)+2^5\cdot\left(2^0+2^1+2^2+2^3+2^4\right)+...+2^{2000}\cdot\left(2^0+2^1+2^2+2^3+2^4\right)\)
\(A=31+2^5\cdot31+...+2^{2000}\cdot31\)
\(A=31\cdot\left(1+2^5+...+2^{2000}\right)\)
\(\Rightarrow A⋮31\left(đpcm\right)\)
A = 2 + 22 + 23 +......+ 260
-> A = ( 2 + 22 ) + ( 23 + 24 ) + ....+ ( 259 + 260 )
-> A = 2.( 1+2 ) + 23.( 1+2) +......+ 259.( 1+2)
-> A = 2.3 + 23.3 +......+ 259.3
-> A= 3.( 2 + 23 +.....+ 259)
Vì 3 chia hết cho 3
-> 3.( 2 + 23 +...+259)
Vậy A chia hết cho 3
A = 2 + 22 + 23 +.......+ 260
-> A = ( 2 + 22 + 23 ) +.......+ ( 258 + 259 + 260 )
-> A = 2.( 1 + 2 + 22 ) +......+ 258 .( 1 + 2 + 22 )
-> A = 2.7 +.....+ 258.7
-> A = 7.( 2 + .....+ 258 )
Vì 7 chia hết cho 7
-> 7.( 2+....+ 258 )
Vậy A chia hết cho 7
A = 2 + 22 + 23 +......+ 260
-> A = ( 2 + 22 + 23 + 24 ) +.....+ ( 257 + 258 + 259 + 260 )
-> A = 2.( 1 + 2 + 22 + 23 ) +.....+ 257.( 1+ 2 + 22 + 23 )
-> A = 2.15 + ......+ 257.15
-> A = 15.( 2 +.... + 257 )
Vì 15 chia hết cho 15
-> 15.( 2 +....+ 257 )
Vậy A chia hết cho 15
1,
\(A=2^0+2^1+2^2+..+2^{2006}\)
\(=1+2+2^2+...+2^{2016}\)
\(2A=2+2^2+2^3+..+2^{2007}\)
\(2A-A=\left(2+2^2+2^3+..+2^{2007}\right)-\left(1+2+2^2+..+2^{2006}\right)\)
\(A=2^{2017}-1\)
\(B=1+3+3^2+..+3^{100}\)
\(3B=3+3^2+3^3+..+3^{101}\)
\(3B-B=\left(3+3^2+..+3^{101}\right)-\left(1+3+..+3^{100}\right)\)
\(2B=3^{101}-1\)
\(\Rightarrow B=\frac{3^{100}-1}{2}\)
\(D=1+5+5^2+...+5^{2000}\)
\(5D=5+5^2+5^3+...+5^{2001}\)
\(5D-D=\left(5+5^2+..+5^{2001}\right)-\left(1+5+...+5^{2000}\right)\)
\(4D=5^{2001}-1\)
\(D=\frac{5^{2001}-1}{4}\)
A=(1+2)+(2^2+2^3)+....+(2^2018+2^2019)
A=(1+2) + 2^2(1+2)+ +(2^2018(1+2)
a=3.1+2^2 x 3 +.......+2^2018x3
A=3(1+2^2+....+2^2018) chia hết cho 3 (vì 3 nhân với số nào cũng chia hết cho 3)
=>A chia hết cho 3
a)ta có 74n-1 = (74)n-1 = 2401n - 1 = ...1-1=...0 \(⋮\) 10 { vì 2041 có tận cùng bằng 1 nên 2041 mũ mấy cũng có tận cùng bằng 1 nên 2041n có tận cùng bằng 1}
b) ta có 92n+1+1 = (92)n . 9 + 1 = 81n .9 +1 = ..1 .9 +1=..9+1=..0 \(⋮\)10 { vì 81 có tận cùng bằng 1 nên 81 mũ mấy cũng có tận cùng bằng 1 nên 81n có tận cùng bằng 1}
cho mik mik giải nốt bài 2 cho
a) \(A⋮3\)
\(A=2^0+2^1+2^2+....+2^{41}\)
\(=\left(2^0\times1+2^0\times2\right)+...+\left(2^{40}\times1+2^{40}\times2\right)\)
\(=2^0\times\left(1+2\right)+....+2^{40}\times\left(1+3\right)\)
\(=2^0\times3+...+2^{40}\times3\)
\(=3.\left(2^0\times...\times2^{40}\right)⋮3\)
Vậy \(A⋮3\)
b) \(A⋮7\)
\(A=2^0+2^1+2^2+...+2^{41}\)
\(=\left(2^0\times1+2^0\times2+2^0\times2^2\right)+...+\left(2^{39}\times1+2^{39}\times2+2^{39}\times2^2\right)\)
\(=2^0\times\left(1+2+2^2\right)+...+2^{39}\times\left(1+2+2^2\right)\)
\(=2^0\times7+...+2^{39}\times7\)
\(=7\times\left(2^0+...+2^{39}\right)⋮7\)
Vậy \(A⋮7\)
Nếu đúng thì k cho mk nhé