Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
s=2+2^2+2^3+.....+2^100
s=2.(1+2+2^2+2^3)+......+2^97.(1+2+2^2+2^3)
s=2.15+....+2^97.15
s=15.(2+....+2^97)
=> s chia het cho 15
a=3+3^2+3^3+....+3^20
a=3.(1+3)+......+3^19.(1+3)
a=3.4+.....+3^19.4
a=4.(3+.....+3^19)
vay a chia het cho 4
Ta có :
A = 2 + 22 + ... + 22010
A = ( 2 + 22 ) + ( 23 + 24 ) + ... + ( 22009 + 22010 )
A = 2 . ( 1 + 2 ) + 23 . ( 1 + 2 ) + ... + 22009 . ( 1 + 2 )
A = 2 . 3 + 23 . 3 + ... + 22009 . 3
A = 3 . ( 2 + 23 + ... + 22009 ) \(⋮\)3
A = 2 + 22 + ... + 22010
A = ( 2 + 22 + 23 ) + ( 24 + 25 + 26 ) + ... + ( 22008 + 22009 + 22010 )
A = 2 . ( 1 + 2 + 22 ) + 24 . ( 1 + 2 + 22 ) + ... + 22008 . ( 1 + 2 + 22 )
A = 2 . 7 + 24 . 7 + ... + 22008 . 7
A = 7 . ( 2+ 24 + ... + 22008 ) \(⋮\)7
B = 3 + 32 + ... + 32010
B = ( 3 + 32 ) + ... + ( 32009 + 32010 )
Làm tương tự chứng minh được B \(⋮\)4
B = 3 + 32 + ... + 32010
B = ( 3 + 32 + 33 ) + ... + ( 32008 + 32009 + 32010 )
Làm tương tự chứng minh được B \(⋮\)13
a, \(A=2+2^2+...+2^{2010}\)
\(\Leftrightarrow A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{99}+2^{100}\right)\)
\(\Leftrightarrow A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{99}\left(1+2\right)\)
\(\Leftrightarrow A=2.3+2^3.3+...+2^{99}.3\)
\(\Leftrightarrow A=3\left(2+2^2+...+2^{99}\right)\)chia hết cho 3
A=1+7+72+73+...+719
= (1+7+72+73)+(74+75+76+77)+...+(7196+7197+7198+7199)
= (1+7+49+343)+74.(1+7+72+73)+...+7196.(1+7+72+73)
= 400+74.400+...+7196.400
= 400.(1+74+...+7196) chia hết cho 400
=> A chia hết cho 400 (đpcm)
\(A=2+2^2+2^3+........+2^{49}+2^{50}\)
\(=2.\left(1+2\right)+2^3+\left(1+2\right)+........2^{59}+\left(1+2\right)\)
\(=2.3+2^3.3+........+2^{59}.3\)
\(=3.\left(2+2^3+.......+2^{59}\right)\) luôn chia hết cho 3
Vay \(A=2+2^2+2^3+........+2^{49}+2^{50}\) chia hết cho 3
vì 3^1 chia hết cho3
3^2 chia hết cho 3
.....
3^60 chia hết cho 3
mà ta có tính chất :a chia hết cho c
b chia hết cho c
(a+b) chia hết cho c
nên tổng trên chia hết cho 3
Dùng kí hiệu chia hết nha:)
còn chia hết cho 4 thì:
3^1+3^2+....+3^60
=(3^1+3^2)+(3^3+3^4)+....+(3^59+3^60)
=12+3^2 x (3+3^2)+.....+3^58 x (3+3^2)
=12+3^2 x 12+....+3^58 x 12
=12 x (3^2 +......+3^58)
=4 x 3 x (3^2+...+3^58) chia hết cho 4
tự làm đi zốt
dốt con khỉ
bà dốt chứ có giỏi con giải bài này . Bị đặc ko biết làm mà cứ hênh hoang như mình học giỏi lắm vậy