Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Tính số đo các góc BOD, DOE, COE
Dựa vào các số đo đã cho:
- ∠BOC = 42°
- ∠AOD = 97°
- ∠AOE = 56°
Giả sử các tia nằm trên cùng một mặt phẳng và theo thứ tự: B → O → C → D → E → A
Tính từng góc:
- ∠BOD = ∠AOD − ∠BOC = 97° − 42° = 55°
- ∠DOE = ∠AOE − ∠AOD = 56° − 97° = −41° → không hợp lý
→ Vậy ta lấy: ∠DOE = ∠AOD − ∠AOE = 97° − 56° = 41° - ∠COE = ∠BOD + ∠DOE = 55° + 41° = 96°
- b) Tia OD có phải là phân giác của góc COE không?
- Phân giác là tia chia góc thành hai phần bằng nhau.
- ∠COE = 96°, mà ∠BOD = 55°, ∠DOE = 41°
- Vì 55° ≠ 41°, nên tia OD không phải là phân giác của ∠COE

góc xoy = 70 độ
góc xoz = 120 độ
số đo góc xoz :
xoz = 120 độ -70 độ = 50 độ
tia om là tia phân giác của góc xoy nên:
xom = xoy/2 = 70 độ /2 = 35 độ
tia on là tia phân giác của góc xoz nên:
xon = xoz/2 =120 độ/2 = 60 độ
góc mon là góc giữa tia om và on :
mon = 60 độ - 35 độ = 25 độ
két quả:
- Số đo góc \(yoz=50^{\circ}\)
- Số đo góc \(xom=35^{\circ}\)
- Số đo góc \(xon=60^{\circ}\)
- Số đo góc \(mon=25^{\circ}\)
Trên cùng một nửa mặt phẳng bờ chứa tia Ox, ta có: \(\hat{xOy}<\hat{xOz}\left(70^0<100^0\right)\)
nên tia Oy nằm giữa hai tia Ox và Oz
=>\(\hat{xOy}+\hat{yOz}=\hat{xOz}\)
=>\(\hat{yOz}=100^0-70^0=30^0\)
Om là phân giác của góc xOy
=>\(\hat{xOm}=\hat{yOm}=\frac12\cdot\hat{xOy}=\frac12\cdot70^0=35^0\)
On là phân giác của góc xOz
=>\(\hat{xOn}=\hat{zOn}=\frac12\cdot\hat{xOz}=\frac12\cdot120^0=60^0\)
Trên cùng một nửa mặt phẳng bờ chứa tia Ox, ta có: \(\hat{xOm}<\hat{xOn}\left(35^0<60^0\right)\)
nên tia Om nằm giữa hai tia Ox và On
=>\(\hat{xOm}+\hat{mOn}=\hat{xOn}\)
=>\(\hat{mOn}=60^0-35^0=25^0\)

câu này mình vừa làm ở bạn Khang Phạm Duy , HÂN nhé
tham khảo .mình giải rất chi tiết

a)\(\Delta ABH\) vuông tại H có:
BH2 =AB2 -AH2 =132 -122 =25( ĐL Pytago)
=> BH=5 cm
BC=BH+HC=5+16=21 cm
\(\Delta AHC\) vuông tại H có:
AH2 + HC2 =AC2 ( đl Pytago)
=> AC2 =122 + 162 =20 cm
b) \(\Delta AHB\) vuông tại H có: AB2 = AH2 +BH2 ( ĐL Pytago)
=> BH2 =AB2 - AH2 =132 - 122 =25
=> BH=5 cm
BC= BH+HC=5+16=21 cm
\(\Delta AHC\) vuông tại H có: AC2 = AH2 +HC2 ( đL Pytago)
=> AC2 = 122 + 162 =400
=> AC= 20 cm

B C H
mk chỉ vẽ hình thôi nha bạn nhiinf vào hình rồi giải
hình ko đc chuẩn lắm
Giải
a) Xét tam giác ABH và tam giác DBH có:
AH=DH(gt)
góc AHB=góc BHD (=90 độ)
BH cạnh chung
Vậy tam giác ABH=tam giác DBH (c.g.c)
b)Xét tam giác AHC và tam giác DHC có:
AH=DH(gt)
góc AHC= góc DHC (=90độ)
HC cạnh chung
Suy ra:tam giác AHC=tam giác DHC(c.g.c)
suy ra:AC=CD(2 cạnh t/ứ)

\(\Delta\)ABC cân,ACB=100 độ=>CAB=CBA=40 độ
trên AB lấy AE=AD.cần chứng minh AE+DC=AB (hoặc EB=DC)
\(\Delta\)AED cân,DAE=40 độ:2=20 độ
=>ADE=AED=80 độ=40 độ+EDB (góc ngoài của \(\Delta\)EDB)
=>EDB=40 độ =>EB=ED (1)
trên AB lấy C' sao cho AC'=AC
\(\Delta\)CAD=\(\Delta\)C'AD (c.g.c)
=>AC,D=100 độ và DC,E=80 độ
vậy \(\Delta\)DC'E cân =>DC=ED (2)
từ (1) và (2) có EB=DC'
mà DC'=DC.vậy AD+DC=AB
a: Xét ΔABH vuông tại H và ΔACH vuông tại H có
AH chung
HB=HC
Do đó: ΔABH=ΔACH
b: ΔABH=ΔACH
=>\(\widehat{BAH}=\widehat{CAH}\)
Xét ΔADH vuông tại Dvà ΔAEH vuông tại E có
AH chung
\(\widehat{DAH}=\widehat{EAH}\)
Do đó: ΔADH=ΔAEH
c: Ta có; ΔADH=ΔAEH
=>AD=AE và HD=HE
Ta có: ΔABH=ΔACH
=>\(\widehat{B}=\widehat{C}\)
Xét ΔDBH vuông tại Dvà ΔECH vuông tại E có
BH=CH
HD=HE
Do đó: ΔDBH=ΔECH