K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 11 2016

a/ Gọi điểm cố định \(M\left(x_0;y_0\right)\)

Khi đó đường thẳng y = k(x+3)-7 đi qua M , tức \(k\left(x_0+3\right)-7-y_0=0\) 

Vì đường thẳng y = k(x+3)-7 luôn đi qua M nên \(\hept{\begin{cases}x_0+3=0\\-y_0-7=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x_0=-3\\y_0=-7\end{cases}}\)

Vậy đường thẳng đã cho luôn đi qua điểm M(-3;-7)

b/ Gọi điểm cố định là \(N\left(x_0;y_0\right)\)

Vì họ đường thẳng (m+2)x + (m-3)y -m+8 = 0 luôn đi qua N nên : 

\(\left(m+2\right).x_0+\left(m-3\right).y_0-m+8=0\)

\(\Leftrightarrow m\left(x_0+y_0-1\right)+\left(2x_0-3y_0+8\right)=0\)

Ta có \(\hept{\begin{cases}x_0+y_0-1=0\\2x_0-3y_0+8=0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x_0=-1\\y_0=2\end{cases}}\)

Vậy điểm cố định N(-1;2)

Câu còn lại bạn làm tương tự nhé ^^

12 tháng 11 2016

c/ Đơn giản thôi mà =)

Ta cũng gọi điểm cố định đó là \(M\left(x_0;y_0\right)\)

Vì họ đường thẳng y=(2-k)x+k-5 đi qua M nên : 

\(y_0=\left(2-k\right)x_0+k-5\Leftrightarrow k\left(1-x_0\right)+\left(2x_0-y_0-5\right)=0\)

Ta có \(\hept{\begin{cases}1-x_0=0\\2x_0-y_0-5=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x_0=1\\y_0=-3\end{cases}}\)

Vậy điểm cố định là M(1;-3)

16 tháng 6 2017

Gọi điểm cố định mà các đường thẳng (d) đều đi qua P( x o ,  y o ).

Ta có:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Phương trình (*) nghiệm đúng với mọi giá trị không âm của k , do đó ta có:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Vậy, với k ≥ 0, các đường thẳng (d) đều đi qua điểm cố định P(1-  3 ;  3  – 1).

29 tháng 9 2022

???

4 tháng 6 2019

 Với k ≥ 0 ta có:

Đề kiểm tra Toán 9 | Đề thi Toán 9

Giả sử ( x 0 ; y 0 ) là điểm cố định mà (d) luôn đi qua

Khi đó ta có:

Đề kiểm tra Toán 9 | Đề thi Toán 9

Vậy điểm cố định mà (d) luôn đi qua với mọi k ≥ 0 là (1- 3 ;  3 -1)

23 tháng 12 2018

a) (d) đi qua điểm (1;2)

<=> 2 = k + 1 + k

<=> 1 = 2k

<=> k = 0,5

Vậy k = 0,5 thì (d) đi qua (1;2)

b) Để (d) // đgth y = 2x + 3

\(\Leftrightarrow\hept{\begin{cases}k+1=2\\k\ne3\end{cases}\Leftrightarrow\hept{\begin{cases}k=1\\k\ne3\end{cases}\Rightarrow}k=1}\)

Vậy k =1 thì (d) // đgth y = 2x +3

c) Gọi điểm cố định là (d) đi qua là (x0;y0)

Ta có y0 = ( k +1) x0 + k

<=> y0 = kx0 + x0+k

<=> y0 - x0 - k ( x0 + 1) = 0 \(\forall\)k

Để pt nghiệm đúng với mọi k <=> \(\hept{\begin{cases}x_0+1=0\\y_0-x_0=0\end{cases}\Leftrightarrow\hept{\begin{cases}x_0=-1\\y_0=-1\end{cases}}}\)

Điểm cố định (d) luôn đi qua là ( -1;-1)

Gọi điểm cố định là \(M\left(x_0;y_0\right)\)

\(\Rightarrow2mx_0+2m+1=y_0\)  \(\left(\forall m\right)\)

\(\Leftrightarrow2m\left(x_0+1\right)=y_0-1\)  \(\left(\forall m\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_0+1=0\\y_0-1=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_0=-1\\y_0=1\end{matrix}\right.\)

  Vậy đường thẳng luôn đi qua \(M\left(-1;1\right)\)

4 tháng 2 2021

lại nx à

13 tháng 11 2023

a:

Sửa đề: \(I\left(\dfrac{1}{2};-3\right)\)

Thay \(x=\dfrac{1}{2};y=-3\) vào (d): \(y=\left(1-2m\right)x+m-\dfrac{7}{2}\), ta được:

\(\left(1-2m\right)\cdot\dfrac{1}{2}+m-\dfrac{7}{2}=-3\)

=>\(\dfrac{1}{2}-m+m-\dfrac{7}{2}=-3\)

=>\(\dfrac{1}{2}-\dfrac{7}{2}=-3\)

=>-3=-3(đúng)

vậy: I(1/2;-3) là điểm cố định mà (d): \(y=\left(1-2m\right)x+m-\dfrac{7}{2}\) luôn đi qua

b: \(\left(d\right):y=\left(2m+1\right)x+m-2\)

\(=2mx+x+m-2\)

\(=m\left(2x+1\right)+x-2\)

Điểm mà (d) luôn đi qua có tọa độ là:

\(\left\{{}\begin{matrix}2x+1=0\\y=x-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\y=-\dfrac{1}{2}-2=-\dfrac{5}{2}\end{matrix}\right.\)

y=mx+2x-m+3=m(x-1)+2x+3

ĐIểm mà d luôn đi qua là:

x-1=0 và y=2x+3

=>x=1 và y=2+3=5

1 tháng 3 2022

???

1 tháng 3 2022

what?