\(\frac{a}{n\left(n+a\right)}=\frac{1}{n}-\frac{1}{n+a}\left(n,a\in Ns...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 7 2015

        ta có \(\frac{1}{n}-\frac{1}{n+a}=\frac{n+a}{n\left(n+a\right)}-\frac{n}{n\left(n+a\right)}=\frac{n+a-n}{n\left(n+a\right)}=\frac{a}{n\left(n+a\right)}\)

                            vậy \(\frac{a}{n\left(n+a\right)}=\frac{1}{n}-\frac{1}{n+a}\)

27 tháng 12 2015

\(\frac{a}{n+2}=\frac{b}{n+5}=\frac{c}{n+8}=k\Leftrightarrow a=nk+2k;b=nk=5k;c=nk+8k\)

\(\left(a+c\right)^2=\left(nk+2k+nk+8k\right)^2=4k^2\left(n+5\right)^2\) ( sai nhế)

\(4\left(a-b\right)\left(b-c\right)=4\left(nk+2k-nk-5k\right)\left(nk+5k-nk-8k\right)=4\left(-3k\right)\left(-3k\right)=36k^2\)

\(\left(a-c\right)^2=\left(nk+2k-nk-8k\right)^2=4\left(-6k\right)^2=36k^2\)

=> \(\left(a-c\right)^2=4\left(a-b\right)\left(b-c\right)\)

 

9 tháng 6 2017

Tìm trước khi hỏi , google-sama chưa tính phí mà !

Câu hỏi của phạm minh anh - Toán lớp 7 - Học toán với OnlineMath

9 tháng 6 2017

\(\frac{a}{b}\)\(\frac{a\left(a+n\right)}{b\left(b+n\right)}\) = \(\frac{ab+an}{b^2+bn}\)

\(\frac{a+n}{b+n}\)\(\frac{\left(a+n\right)b}{\left(b+n\right)b}\)\(\frac{ab+nb}{b^2+bn}\)

Nếu a < b thì ab + an < ab + nb => \(\frac{a}{b}\)\(\frac{a+n}{b+n}\)

Nếu a > b thì ab + an > ab + nb => \(\frac{a}{b}\)\(\frac{a+n}{b+n}\)

Nếu a = b thì ab + an = ab + nb => \(\frac{a}{b}\)\(\frac{a+n}{b+n}\)

26 tháng 2 2018

Ta có : 

\(A=\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{\left(2n\right)^2}\)

\(A=\frac{1}{2^2}\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\right)< \frac{1}{2^2}\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}\right)\)

\(A< \frac{1}{4}\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\right)=\frac{1}{4}\left(1-\frac{1}{n}\right)\)

\(A< \frac{1}{4}-\frac{1}{4n}\)

Lại có \(n>0\) nên \(\frac{1}{4n}>0\)

\(\Rightarrow\)\(\frac{1}{4}-\frac{1}{4n}< \frac{1}{4}\)

Vậy \(A< \frac{1}{4}\)

21 tháng 2 2016

\(S=\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+....+\frac{1}{n}-\frac{1}{n+3}\)

     \(=1-\frac{1}{n+3}<1\)

24 tháng 4 2018

Ta có :

\(\frac{a_1}{a_2}=\frac{a_2}{a_3}=...=\frac{a_n}{a_{n+1}}=\frac{a_1+a_2+...+a_n}{a_2+a_3+...+a_{n+1}}\)

\(\Rightarrow\)\(\frac{a_1^n}{a_2^n}=\frac{a_2^n}{a_3^n}=...=\frac{a_n^n}{a_{n+1}^n}=\frac{a_1^n+a_2^n+...+a_n^n}{a_2^n+a_3^n+...+a_{n+1}^n}=\frac{\left(a_1+a_2+...+a_n\right)^n}{\left(a_2+a_3+...+a_{n+1}\right)^n}=\frac{a_1.a_2...a_n}{a_2.a_3...a_{n+1}}=\frac{a_1}{a_{n+1}}\)

7 tháng 10 2020

1.

\(10x=|x+\dfrac{1}{10}|+|x+\dfrac{2}{10}|+...+|x+\dfrac{9}{10}| \ge 0\)

\(\Rightarrow x\ge0\)

\(pt\Leftrightarrow x+\frac{1}{10}+x+\frac{2}{10}+...+x+\frac{9}{10}=10x\)

\(\Leftrightarrow x=\frac{1}{10}+\frac{2}{10}+...+\frac{9}{10}=\frac{9}{2}\)

\(\Rightarrow x=\frac{9}{2}\)

7 tháng 10 2020

4.

Áp dụng tính chất dãy tỉ số bằng nhau

\(\frac{a}{b+3c}=\frac{b}{c+3a}=\frac{c}{a+3b}=\frac{a+b+c}{4\left(a+b+c\right)}=\frac{1}{4}\)

\(\Rightarrow\left\{{}\begin{matrix}4a=b+3c\left(1\right)\\4b=c+3a\left(2\right)\\4c=a+3b\left(3\right)\end{matrix}\right.\)

Từ \(\left(1\right);\left(2\right)\Rightarrow4a=b+3\left(4b-3a\right)\)

\(\Rightarrow12a=12b\Rightarrow a=b\left(4\right)\)

Từ \(\left(1\right);\left(3\right)\Rightarrow4c=a+3\left(4a-3c\right)\)

\(\Rightarrow12a=12c\Rightarrow a=c\left(5\right)\)

Từ \(\left(4\right);\left(5\right)\Rightarrow a=b=c\left(đpcm\right)\)

18 tháng 11 2019

Ta có

\(A=\frac{1}{14}+\frac{1}{29}+...+\frac{1}{n^2+\left(n+1\right)^2+\left(n+2\right)^2}+...+\frac{1}{1877}\)

\(=\frac{1}{1^2+2^2+3^2}+\frac{1}{2^2+3^2+4^2}+...+\frac{1}{n^2+\left(n+1\right)^2+\left(n+2\right)^2}+...+\frac{1}{24^2+25^2+26^2}\)

\(B=n^2+\left(n+1\right)^2+\left(n+2\right)^2=3n^2+6n+5\left(1\right)\)

+ Với \(n\ge1\)từ (1) ta có \(B\le3n^2+9n+6=3\left(n^2+3n+2\right)=3\left(n+1\right)\left(n+2\right)\)Từ đó

\(A>\frac{1}{3}\left(\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+....+\frac{1}{\left(n+1\right)\left(n+2\right)}+...+\frac{1}{24\cdot25}+\frac{1}{25\cdot26}\right)=\frac{1}{3}C\)

Với \(C=\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+....+\frac{1}{\left(n+1\right)\left(n+2\right)}+...+\frac{1}{24\cdot25}+\frac{1}{25\cdot26}\)

\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{25}-\frac{1}{26}=\frac{1}{2}-\frac{1}{26}=\frac{6}{13}\)

\(\Rightarrow A>\frac{1}{3}\cdot\frac{6}{13}=\frac{2}{13}>0,15\)

+ Với \(n\ge1\)từ (1) ta có \(B>2n^2+6n+4=2\left(n^2+3n+2\right)=2\left(n+1\right)\left(n+2\right)\)

\(\Rightarrow A< \frac{1}{2}\left(\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+....+\frac{1}{\left(n+1\right)\left(n+2\right)}+...+\frac{1}{24\cdot25}+\frac{1}{25\cdot26}\right)=\frac{1}{2}C\)

Với \(C=\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+....+\frac{1}{\left(n+1\right)\left(n+2\right)}+...+\frac{1}{24\cdot25}+\frac{1}{25\cdot26}\)

\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{25}-\frac{1}{26}=\frac{1}{2}-\frac{1}{26}=\frac{6}{13}\)

\(\Rightarrow A< \frac{1}{2}\cdot\frac{6}{13}=\frac{3}{13}< 0,25\)

Vậy \(0,15< A< 0,25\)