\(\frac{1}{4}+\frac{1}{16}+\frac{1}{36}+\frac{1}{64}+\frac{1}{100}+\frac{1}{1...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 5 2017

a, \(\frac{1}{5}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{61}+\frac{1}{62}+\frac{1}{63}=\frac{1}{5}+\left(\frac{1}{13}+\frac{1}{14}+\frac{1}{15}\right)+\left(\frac{1}{61}+\frac{1}{62}+\frac{1}{63}\right)\)

Ta có: \(\frac{1}{13}< \frac{1}{12};\frac{1}{14}< \frac{1}{12};\frac{1}{15}< \frac{1}{12}\Rightarrow\frac{1}{13}+\frac{1}{14}+\frac{1}{15}< \frac{1}{12}+\frac{1}{12}+\frac{1}{12}=\frac{3}{12}=\frac{1}{4}\)

\(\frac{1}{61}< \frac{1}{60};\frac{1}{62}< \frac{1}{60};\frac{1}{63}< \frac{1}{60}\Rightarrow\frac{1}{61}+\frac{1}{62}+\frac{1}{63}< \frac{1}{60}+\frac{1}{60}+\frac{1}{60}=\frac{3}{60}=\frac{1}{20}\)

\(\Rightarrow\frac{1}{5}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{61}+\frac{1}{62}+\frac{1}{63}< \frac{1}{5}+\frac{1}{4}+\frac{1}{20}=\frac{1}{2}\)

Vậy...

2 tháng 5 2017

b, Đặt A là tên của tổng trên

Ta có: \(A=\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{100^2}=\frac{1}{2^2}\left(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\right)\)

Đặt B là biêu thức trong ngoặc

Ta có: \(1=1;\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};....;\frac{1}{50^2}< \frac{1}{49.50}\)

\(\Rightarrow B< 1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)

\(\Rightarrow B< 1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)

\(\Rightarrow B< 2-\frac{1}{50}< 2\)

Thay B vào A ta được:

\(A< \frac{1}{2^2}.2=\frac{1}{2}\)

11 tháng 4 2018

A = 1/5 + 1/13 + 1/14 + 1/15 + 1/60 + 1/61 + 1/62 + 1/63

Ta có : A = 1/5 + 1/13 + 1/14 + 1/15 + 1/60 + 1/61 + 1/62 + 1/63 < 1/5 + 1/12 + 1/12 + 1/12 + 1/60 + 1/60 + 1/60 

               = A < 1/5 + 1/4 + 1/20 

               = A < 1/2

Vậy A < 1/12

2 tháng 4 2020

Ta có: 1/4+1/6+1/10000 luôn bé hơn 1/2 vì phân số có mẫu số càng lớn thì phân số càng  nhỏ.

Nhớ k và kết bạn cho mình nha

2 tháng 4 2020

\(\frac{1}{4}\)\(\frac{1}{16}\)\(\frac{1}{32}\)\(\frac{1}{64}\)\(\frac{1}{100}\)\(\frac{1}{144}\)\(\frac{1}{196}\)+ .........+ \(\frac{1}{10000}\)\(\frac{1}{2}\)

Nhận xét : Theo định luật toán học,khi phân số có các tử số bằng nhau,thì phân số nào có mẫu số càng lớn,phân số càng bé.Vậy phân số \(\frac{1}{2}\)lớn hơn biểu thức ở trên.

Hok tốt #

10 tháng 3 2018

Bạn tham khảo nhé 

\(A=\frac{1}{4}+\frac{1}{16}+\frac{1}{36}+\frac{1}{64}+\frac{1}{100}+\frac{1}{144}+\frac{1}{196}=\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+\frac{1}{10^2}+\frac{1}{12^2}+\frac{1}{14^2}\)

\(2A=\frac{2}{2^2}+\frac{2}{4^2}+\frac{2}{6^2}+\frac{2}{8^2}+\frac{2}{10^2}+\frac{2}{12^2}+\frac{2}{14^2}\)

\(2A< \frac{1}{2}+\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+\frac{2}{8.10}+\frac{2}{10.12}+\frac{2}{12.14}\)

\(2A< \frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+\frac{1}{8}-\frac{1}{10}+\frac{1}{10}-\frac{1}{12}+\frac{1}{12}-\frac{1}{14}\)

\(2A< \frac{1}{2}+\frac{1}{2}-\frac{1}{14}\)

\(2A< 1-\frac{1}{14}\)

\(2A< \frac{13}{14}\)

\(A< \frac{13}{28}< \frac{14}{28}=\frac{1}{2}\) ( đpcm ) 

Vậy \(A< \frac{1}{2}\)

Chúc bạn học tốt ~

10 tháng 3 2018

\(A=\frac{1}{4}+\frac{1}{16}+\frac{1}{36}+\frac{1}{64}+\frac{1}{100}+\frac{1}{144}+\frac{1}{196}\)

\(A=\frac{1}{4}+\frac{1}{16}+\frac{1}{36}+...+\frac{1}{196}< \frac{1}{2^2-1}+\frac{1}{4^2-1}+\frac{1}{6^2-1}+...+\frac{1}{14^2-1}\)

\(A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{13.15}\)

\(A=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-...\frac{1}{13}+\frac{1}{13}-\frac{1}{15}\right)\)

\(A=\frac{1}{2}\left(1-\frac{1}{15}\right)< \frac{1}{2}\)

Vậy \(A=\frac{1}{4}+\frac{1}{16}+\frac{1}{36}+\frac{1}{64}+\frac{1}{100}+\frac{1}{144}+\frac{1}{196}< \frac{1}{2}\left(đpcm\right)\)

28 tháng 2 2017

Ta có : 

\(\frac{1}{13}< \frac{1}{12}\)

\(\frac{1}{14}< \frac{1}{12}\)

\(\frac{1}{15}< \frac{1}{12}\)

\(\Rightarrow\frac{1}{13}+\frac{1}{14}+\frac{1}{15}< \frac{1}{12}+\frac{1}{12}+\frac{1}{12}=3\cdot\frac{1}{12}=\frac{1}{4}\) (1)

Ta cũng có :

\(\frac{1}{61}< \frac{1}{60}\)

\(\frac{1}{62}< \frac{1}{60}\)

\(\frac{1}{63}< \frac{1}{60}\)

\(\Rightarrow\frac{1}{61}+\frac{1}{62}+\frac{1}{63}< \frac{1}{60}+\frac{1}{60}+\frac{1}{60}=3\cdot\frac{1}{60}=\frac{1}{20}\) (2)

Từ (1) ; (2) \(\Rightarrow S=\frac{1}{5}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{61}+\frac{1}{62}+\frac{1}{63}< \frac{1}{5}+\frac{1}{4}+\frac{1}{20}=\frac{1}{2}\)

=> S < \(\frac{1}{2}\) (đpcm)

28 tháng 2 2017

sao tui ko thíck làm thui nhé