Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) C=\(\left(1+3+3^2\right)+....+\left(3^9+3^{10}+3^{11}\right)\)
=13+.....+3^11 chia het cho 13
nen C=1+3+...+3^11 chia het cho 13
a)Ta có : \(C=1+3+3^2+3^3+...+3^{11}\)
\(=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^9+3^{10}+3^{11}\right)\)
\(=\left(1+3+3^2\right)+3^3\left(1+3+3^2\right)+...+3^9\left(1+3+3^2\right)\)
\(=\left(1+3+3^2\right)\left(1+3^3+...+3^9\right)\)
\(=13\left(1+3^3+...+3^9\right)⋮13\)
b)\(C=1+3+3^2+3^3+...+3^{11}\)
\(=\left(1+3+3^2+3^3\right)+\left(3^4+3^4+3^6+3^7\right)+\left(3^8+3^9+3^{10}+3^{11}\right)\)
\(=\left(1+3+3^2+3^3\right)+3^4\left(1+3+3^2+3^3\right)+3^8\left(1+3+3^2+3^3\right)\)
\(=\left(1+3+3^2+3^3\right)\left(1+3^4+3^8\right)\)
\(=40.\left(1+3^4+3^8\right)⋮40\)
1)
\(A=156+273+533+y\)
\(A=962+y\)
\(962⋮13\)
Để \(A⋮13\rightarrow y⋮13\)
\(A⋮̸13\rightarrow y⋮̸13\)
2)
\(A=1+3+3^2+...+3^{11}\)
* để A chia hết cho 13:
\(A=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^9+3^{10}+3^{11}\right)\)
\(A=1\left(1+3+3^2\right)+3^3\left(1+3+3^2\right)+...+3^9\left(1+3+3^2\right)\)
\(A=\left(1+3^3+...+3^9\right)\left(1+3+3^2\right)\)
\(A=13\left(1+3^3+3^9\right)⋮13\rightarrowđpcm\)
* để A chia hết cho 40:
\(A=\left(1+3+3^2+3^3\right)+\left(3^4+3^5+3^6+3^7\right)+...+\left(3^8+3^9+3^{10}+3^{11}\right)\)
\(A=1\left(1+3+3^2+3^3\right)+3^4\left(1+3+3^2+3^3\right)+...+3^8\left(1+3+3^2+3^3\right)\)\(A=\left(1+3^4+...+3^8\right)\left(1+3+3^2+3^3\right)\)
\(A=40\left(1+3^4+...+3^8\right)⋮40\rightarrowđpcm\)
3)
\(25^{24}-25^{23}\)
\(=25^{23}.25-25^{23}.1\)
\(=25^{23}.\left(25-1\right)\)
\(=25^{23}.24\)
\(=25^{23}.4.6⋮6\rightarrowđpcm\)
4) Gọi 5 số tự nhiên liên tiếp đó là a;a+1;a+2;a+3;a+4
Tích của 5 số tự nhiên liên tiếp là :
\(a\left(a+1\right)\left(a+2\right)\left(a+3\right)\left(a+4\right)\)
Ta có: \(a+1;a+3\) hoặc \(a+2;a+4\)là 2 số chẵn liên tiếp nên sẽ chia hết cho 8
5 số tự nhiên liên tiếp luôn có 1 số chia hết cho 5
a;a+1;a+2 luôn sẽ có 1 số chia hết cho 3
5 số tự nhiên liên tiếp đó chia hết cho 3;5;8
\(\Rightarrow⋮120\rightarrowđpcm\)
\(C=1+3+3^2+...+3^{11}\)
\(C=\left(1+3+3^2\right)+3^3\left(1+3+3^2\right)+...+3^9\left(1+3+3^2\right)\)
\(C=13+3^3.13+...+3^9.13\)
\(\Rightarrow C⋮13\)
Ta có:
2+2^2+2^3+...+2^180
=\(\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{178}+2^{179}+2^{180}\right)\)
=\(2.\left(1+2+2^2\right)+2^4.\left(1+2+2^2\right)+...+2^{178}.\left(1+2+2^2\right)\)
=\(2.7+2^4.7+...+2^{178}.7\)
=\(7.\left(2+2^4+2^7+...+2^{178}\right)⋮7\)
Ta lại có:
2+2^2+2^3+...+2^180
=\(\left(2+2^2+2^3+2^4+2^5\right)+...+\left(2^{176}+2^{177}+2^{178}+2^{179}+2^{180}\right)\)
đặt nhân tử chung r làm tương tự câu trên nhé
b,\(3+3^2+3^3+...+3^{99}\)
=\(\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{98}+3^{99}\right)\)
đặt nhân tử chung r làm tương tự câu đầu nhé
còn chứng minh chia hết cho 13 bạn cứ ghép 3 số liên tiếp vs nhau là được nhân tử chung là 39=13.3
a) ta có: 2 + 2^2 + 2^3 + ...+ 2^180
= (2+2^2+2^3) + (2^4+2^5+2^6) + ...+ (2^178+2^179+2^180)
= 2.(1+2+2^2) + 2^4.(1+2+2^2) + ...+ 2^178.(1+2+2^2)
= 2.7+2^4.7+...+2^178.7
= (2+2^4+...+2^178).7 chia hết cho 7
chia hết cho 31 bn lm tương tự nha
b) ta có: 3 + 3^2 + 3^3+3^4+...+3^99
= (3+3^2+3^3) + (3^4+3^5+3^6) + ...+ (3^97+3^98+3^99)
= 3.(1+3+3^2)+3^4.(1+3+3^2)+...+3^97.(1+3+3^2)
= 3.13+3^4.13+...+3^97.13
= (3+3^14+...+3^97).13 chia hết cho 13
a) M =1+3+32+33+......+3118+3119
M = ( 1+3+32 ) +...+ ( 3117 + 3118+3119 )
M = 1. ( 1+3+32 ) + ... + 3117 . ( 3117 + 3118+3119 )
M = ( 1+3+32 ) .( 1 + ... + 3117 )
M = 13 . ( 1 + ... + 3117 ) \(⋮\) 13 (đpcm )
b) Ta có:
\(\dfrac{1}{2^2}< \dfrac{1}{1.2}\)
\(\dfrac{1}{3^2}< \dfrac{1}{2.3}\)
\(\dfrac{1}{4^2}< \dfrac{1}{3.4}\)
...
\(\dfrac{1}{2009^2}< \dfrac{1}{2008.2009}\)
\(\dfrac{1}{2010^2}< \dfrac{1}{2009.2010}\)
=> \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{2009^2}+\dfrac{1}{2010^2}\) < \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2008.2009}+\dfrac{1}{2009.2010}\) (1)
Biến đổi vế trái:
\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2008.2009}+\dfrac{1}{2009.2010}\)
= \(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2008}-\dfrac{1}{2009}+\dfrac{1}{2009}-\dfrac{1}{2010}\)
= \(1-\dfrac{1}{2010}\)
= \(\dfrac{2009}{2010}< 1\) (2)
Từ (1) và (2), suy ra :
\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{2009^2}+\dfrac{1}{2010^2}\) < 1 hay:
N < 1
a) ghép 3 số có lũy thừa liên tiếp thành một bộ
b) Chứng minh abcabc chia hết cho 13 và 11 mà abcabc =abc.1001 có 1001 chia hết cho cả hai số.
a) Đặt \(A=3+3^2+3^3+3^4+...+3^{3000}\)
\(=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{2998}+3^{2999}+3^{3000}\right)\)
\(=3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+...+3^{2998}\left(1+3+3^2\right)\)
\(=13\left(3+3^4+...+3^{2998}\right)⋮13^{\left(đpcm\right)}\)
b) Ta thấy \(143⋮11;13\) do đó \(abcabc\) cũng phải chia hết cho 11;13
Do đó \(abcabc+143⋮11;13^{\left(đpcm\right)}\)