Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=2x^2-8x+1\)
\(A=2\left(x^2-4x+\frac{1}{2}\right)\)
\(A=2\left[x^2-2.2x+4-4+\frac{1}{2}\right]\)
\(A=2\left[\left(x-2\right)^2-\frac{7}{2}\right]\)
\(A=2\left(x-2\right)^2-7\ge7\forall x\)
dấu " = " xảy ra \(\Leftrightarrow x-2=0\Leftrightarrow x=2\)
vậy MIN A = 7 khi \(x=2\)
\(B=-5x^2-4x+1\)
\(B=-5\left(x^2+\frac{4}{5}x-\frac{1}{5}\right)\)
\(B=-5\left(x^2+2.\frac{2}{5}x+\frac{4}{25}-\frac{4}{25}-\frac{1}{5}\right)\)
\(B=-5\left[\left(x+\frac{2}{5}\right)^2-\frac{9}{25}\right]\)
\(B=-5\left(x+\frac{2}{5}\right)^2+\frac{9}{5}\le\frac{9}{5}\forall x\)
dấu \("="\) xảy ra khi \(x+\frac{2}{5}=0\Leftrightarrow x=\frac{-2}{5}\)
vậy MIn B = \(\frac{9}{5}\) khi \(x=\frac{-2}{5}\)
còn lại làm tương tự nhé
Ta có :
\(A=2x^2-8x+1\)
\(A=\left(x^2-4x+4\right)+\left(x^2-4x+4\right)-7\)
\(A=2\left(x^2-4x+4\right)-7\)
\(A=2\left(x-2\right)^2-7\ge-7\)
Dấu "=" xảy ra khi và chỉ khi \(2\left(x-2\right)^2=0\)
\(\Leftrightarrow\)\(\left(x-2\right)^2=0\)
\(\Leftrightarrow\)\(x-2=0\)
\(\Leftrightarrow\)\(x=2\)
Vậy GTNN của \(A\) là \(-7\) khi \(x=2\)
Chúc bạn học tốt ~
Bạn xem lại câu b có thiếu gì ko nhé!!!
a) Xét \(a^2+b^2-2ab\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\)(ĐPCM)
c) Xét \(a^2+b^2+2-2\left(a+b\right)=\left(a^2-2a+1\right)+\left(b^2-2b+1\right)\)
\(=\left(a-1\right)^2+\left(b-1\right)^2\ge0\)
\(\Rightarrow a^2+b^2+2-2\left(a+b\right)\ge0\)
\(\Rightarrow a^2+b^2+2\ge2\left(a+b\right)\)(ĐPCM)
Áp dụng BĐT bunhiacopxki
\(\left(1+2^2\right)\left(x^2+4y^4\right)\ge\left(x+4y\right)^2\)
<=> \(5\left(x^2+4y^2\right)\ge1\)
<=> \(x^2+4y^2\ge\dfrac{1}{5}\) (đpcm)
dấu '=' xảy ra khi x=\(\dfrac{y}{4}\) => x=\(\dfrac{13}{17}\) ;y=\(\dfrac{4}{17}\)
Bunyakovsky k được biết vs dạng đó.Ít nhất cũng phải viết 1^2 chứ
a) \(\left(3x+2\right).\left(x-3\right)-3x.\left(x+\frac{1}{3}\right)\)
\(=3x^2-9x+2x-6-\left(3x^2+x\right)\)
\(=3x^2-9x+2x-6-3x^2-x\)
\(=\left(3x^2-3x^2\right)+\left(-9x+2x-x\right)-6\)
\(=-8x-6.\)
Chúc bạn học tốt!
\(B=\left(3x-2\right)^2-\left(x+2\right).\left(x-2\right)\)
\(=\left(3x-2\right)^2-\left(x^2-2^2\right)\)
\(=9x^2-12x+4-x^2+4\)
\(=8x-12x+8\)
\(C=\left(x+4\right)^2-7x.\left(x-2\right)\)
\(=x^2+8x+16-\left(7x^2-14x\right)\)
\(=x^2+8x+16-7x^2+14x\)
\(=-6x^2+22x+16\)
\(D=-4x.\left(2x-7\right)+\left(x+5\right)^2\)
\(=-8x^2+28x+x^2+10x+25\)
\(=-7x^2+38x+25\)
1) \(x^4-6x^3-x^2+54x-72=0\)
\(\Leftrightarrow x^3\left(x-2\right)-4x^2\left(x-2\right)-9x\left(x-2\right)+36\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^3-4x^2-9x+36\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left[x^2\left(x-4\right)-9\left(x-4\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-4\right)\left(x^2-9\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-4\right)\left(x-3\right)\left(x+3\right)=0\)
Tự làm nốt...
2) \(x^4-5x^2+4=0\)
\(\Leftrightarrow x^2\left(x^2-1\right)-4\left(x^2-1\right)=0\)
\(\Leftrightarrow\left(x^2-1\right)\left(x^2-4\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x+2\right)=0\)
Tự làm nốt...
\(x^4-2x^3-6x^2+8x+8=0\)
\(\Leftrightarrow x^3\left(x-2\right)-6x\left(x-2\right)-4\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^3-6x-4\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left[x^2\left(x+2\right)-2x\left(x+2\right)-2\left(x+2\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x^2-2x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left[\left(x-1\right)^2-\left(\sqrt{3}\right)^2\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x-1-\sqrt{3}\right)\left(x-1+\sqrt{3}\right)=0\)
...
\(2x^4-13x^3+20x^2-3x-2=0\)
\(\Leftrightarrow2x^3\left(x-2\right)-9x^2\left(x-2\right)+2x\left(x-2\right)+\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(2x^3-9x^2+2x+1\right)=0\)
Bí
b/\(\Leftrightarrow\frac{3}{x+1}-\frac{7}{3x+1}\ge0\)
\(\Leftrightarrow\frac{3\left(3x+1\right)-7\left(x+1\right)}{\left(x+1\right)\left(3x+1\right)}\ge0\)
\(\Leftrightarrow\frac{2x-4}{\left(x+1\right)\left(3x+1\right)}\ge0\)
\(\Leftrightarrow\frac{x-2}{\left(x+1\right)\left(3x+1\right)}\ge0\)
x -1/3 -1 2
3x+1 | - | + | + | + |
x+1 | - | - | + | + |
x-2 | - | - | - | + |
VT | - | + | - | + |
Vào bảng dễ dàng xét được VT không âm khi
\(-\frac{1}{3}\ge x\ge-1,x\ge2\)
a/\(\Leftrightarrow x\left(x-1\right)\left(x-2\right)\ge0\)
x 0 1 2
x | - | + | + | + |
x-1 | - | - | + | + |
x-2 | - | - | - | + |
VT | - | + | - | + |
Vậy VT không âm khi \(0\le x\le1,x\ge2\)
a/ \(x^2+xy+y^2+1\)=\(\left(x^2+2x\dfrac{y}{2}+\left(\dfrac{y}{2}\right)^2\right)+\dfrac{3y^2}{4}+1\)
=\(\left(x+\dfrac{y}{2}\right)^2+\dfrac{3y^2}{4}+1\) \(\ge\)0
vậy....
b
\(9a^2+b^2-6a+2b+5\)
\(=\left[\left(3a\right)^2-2.3.a+1\right]+\left(b^2+2b+1\right)+3\)
\(=\left(3a-1\right)^2+\left(b+1\right)^2+3\)
Ta thấy: \(\left(3a-1\right)^2\ge0;\left(b+1\right)^2\ge0\)\(\forall a;b\)
\(\Rightarrow\left(3a-1\right)^2+\left(b+1\right)^2+3>0\forall a;b\)
\(\Rightarrow9a^2+b^2-6a+2b+5>0\forall a;b\)