Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do n( n+1) là hai số tự nhiên liên tiếp ( n thuộc N) => n( n+1) chia hết cho 2 (1)
Do 2n chia hết cho 2 => 2n + 1 chia hết cho 3 ( 2) ( đoạn này hơi tắt)
Từ (1) và (2) => n ( n+1) ( 2n+1) chia hết cho BCNN( 2, 3) hay n( n+1) ( 2n+1) chia hết cho 6( đpcm)
k nha
ns chung méo có ai gáy, sủa cả :3
Ta có:
3^2n+1 + 2^n+2
=(9^n).3 +( 2^n) .4
=(9^n).3 + 3(2^n) + 7(2^n)
=3(9^n-2^n) + 7(2^n) ( các bước này khá giống Phạm Bá Hoàng nhưng ko nghĩa là tớ copy bài cậu ý =))
Mà: 9^n - 2^n chia hết cho 7 ( vì 2 số này cùng chia 7 dư 2 nên mũ mấy lên cx cùng số dư khi chia cho 7)
Cụ thể hơn để mấy bạn khỏi cãi: tớ viết dấu = thay cho 3 gạch ngang nhé :3
Vì: 2=2(mod 7);9=2(mod 7)
=> 2^n=2^n(mod 7); 9^n=2^n(mod 7)
=> 3(9^n-2^n) chia hết cho 7 và 7(2^n) chia hết cho 7
nên 3^2n+1 + 2^n+2 chia hết cho 7 (đpcm)
có lẽ ko sai nx đâu nhỉ nếu sai ib vs =))
Bài này cx easy thôi.Dùng phép quy nạp là ra:
\(3^{2n+1}+2^{n+2}=9^n.3+2^n.4\)
+)Với n = 0 thì \(9^n.3+2^n.4=3+4=7\Rightarrow\)mệnh đề đúng với n = 0. (1)
Giả sử mệnh đề đúng với n = k.Tức là \(9^k.3+2^k.4⋮7\) (2)
Ta c/m nó đúng với n = k + 1.Tức là cần c/m \(9^{k+1}.3+2^{k+1}.4⋮7\) (3)
\(\Leftrightarrow9^k.27+2^k.8⋮7\).Thật vậy:
\(9^k.27+2^k.8=9\left(9^k.3+2^k.4\right)-2^k.28\)
Do \(9\left(9^k.3+2^k.4\right)⋮7;2^k.28⋮7\)
Suy ra \(9\left(9^k.3+2^k.4\right)-2^k.28⋮7\)
Suy ra (3) đúng .
Vậy theo nguyên lí qui nạp,ta có đpcm.
3^n+2=3^n .3^2=9.3^2
2^n+2= 2^n. 2^2= 4.2^2
=>3^n+2- 2^n+2 +3^n- 2^n=9.3^n -4.2^n +3^n -2^n
=3^n.(9+1) -2^n.(4+1)=10.3^n -2^n.5
Vì:10.3^n chia hết cho 10 (mình ko bít viết dấu chia hết)
2^n chia hết cho 2; 5 chia hết cho5; 2,5 là số nguyên tố cùng nhau,n>0
=>2^n.5 chia hết cho 10
dạy mình viết dấu chia hết đi!!!!!!!!!!!!!!!!
Ta co
\(3^{n+2}-2^{n+4}+3^n+2^n=3^n.3^2-2^n.2^4+3^n+2^n=3^n.\left(3^2+1\right)-2^n.\left(2^4-1\right)=3^n.10-2^n.15=5.\left(3^n.2-2^n.3\right)=5.2.3.\left(3^{n-1}-2^{n-1}\right)=30.\left(3^{n-1}-2^{n-1}\right)\)
Vì 30 chia hêt cho 30 nên 30.(\(3^{n-1}-2^{n-1}\)) chia hêt cho 30
Hay \(3^{n+2}-2^{n+4}+3^n+2^n\) chia hêt cho 30