Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
76 + 75 - 74
= 74.( 72 + 7 - 1 )
=74 . 55
= 74 . 5 . 11 \(⋮\)11
\(\Rightarrow\)76 + 75 - 74 \(⋮\)11 ( đpcm )
76 + 75 - 74
= 74(72 + 71 - 1)
= 74.55
55 chia hết cho 11
nên 76 + 75 - 74 chia hết cho 11 (đpcm)
\(S=5+5^2+5^3+5^4+...+6^{96}\)
sử dụng phương pháp nhóm ta được:
\(S=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{95}+5^{96}\right)\)
sử dụng phương pháp phân tích đa thức thành nhân tử ta được:
\(S=\left(5+5^2\right)+5^2\left(5+5^2\right)+...+5^{94}\left(5+5^2\right)\)
\(S=30+5^2\cdot30+...+5^{94}\cdot30\)
\(S=30\cdot\left(1+5^5+...+5^{94}\right)⋮10\)
vậy => đpcm
S = 5+52+53+54+...+596
S = (5+52) + (53+ 54)+....+ ( 595+ 596)
S = 30 + 52( 5+ 52) +..... + 594( 5+ 52)
S= 30 + 52.30 + .... + 594. 30
S= 30 ( 1 + 52+...+ 594)
S= [ 10. 3( 1 + 52+...+ 594)] chia hết cho 10
=> S chia hết cho 10
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
a, Ta có:
\(5^5-5^4+5^3=5^3.\left(5^2-5+1\right)=5^3.21\)
Vì \(5^3.21\) chia hết cho 7 nên \(5^5-5^4+5^3\) chia hết cho 7(đpcm)
b, Ta có:
\(7^6+7^5-7^4=7^4.\left(7^2+7-1\right)=7^4.55\)
Vì \(7^4.55\) chia hết cho 11 nên \(7^6-7^5+7^4\) chia hết cho 11(đpcm)
Chúc bạn học tốt!!!
a, \(5^5-5^4+5^3=5^3\left(5^2-5+1\right)=5^3.21⋮7\)
\(\Rightarrowđpcm\)
b, \(7^6+7^5-7^4=7^4\left(7^2+7-1\right)=7^4.55⋮11\)
\(\Rightarrowđpcm\)
a) Gọi A = 4 + 4 ^1 + 4 ^2 + ... + 4^60
Vì 4 chia hết cho 2; 4^2 chia hết cho 2 và nói chung là tất cả các số hạng đều là số chẵn
=> A chia hết cho 2
\(A=4\cdot\left(4+1\right)+4^3\cdot\left(1+4\right)+...+4^{59}\cdot\left(1+4\right)\)
\(A=4\cdot5+4^3\cdot5+...+5^{59}\cdot5\)
\(A=5\cdot\left(4+4^3+...+4^{59}\right)⋮5\left(đpcm\right)\)
b)
\(B=5\cdot\left(1+5\right)+5^3\cdot\left(1+5\right)+...+5^9\cdot\left(1+5\right)\)
\(B=5\cdot6+5^3\cdot6+...+5^9\cdot6\)
\(B=6\cdot\left(5+5^3+...+5^9\right)⋮6\left(đpcm\right)\)
\(B=3\left(1+3^2+3^4\right)+...+3^{1987}\left(1+3^2+3^4\right)\)
\(=91\cdot\left(3+...+3^{1987}\right)⋮91\)
\(B=3\left(1+3^2+3^4+3^6\right)+...+3^{1985}\left(1+3^2+3^4+3^6\right)\)
\(=820\cdot\left(3+...+3^{1985}\right)⋮41\)
ta có: 55 - 54 + 53
= 53. ( 52 - 5 +1)
= 53. ( 25 -5 +1)
= 53. ( 20 +1)
=53. 21
mà 21 chia hết cho 7
=> 53.21 chia hết cho 7
=> 55-54 + 53 chia hết cho 7
55 - 54 + 53
= 53 . ( 52 - 5 + 1 )
= 53 . 21
= 53 . 3 . 7 \(⋮\)7
Vậy 55 - 54 + 53 \(⋮\)7