Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(4x^2+y^2+4xy+4x+2y+2\)
\(=\left(2x+y\right)^2+2.\left(2x+y\right)+1+1\)
\(=\left(2x+y+1\right)^2+1>0\forall x,y\)
Chúc bạn học tốt.
a, x2 - 2x + 3 > 0
Xét : VT = x2 - 2x + 1 + 2 = ( x - 1 )2 + 2 .
Có : ( x - 1 )2 \(\ge\) 0 với mọi x \(\Rightarrow\) ( x - 1 )2 + 2 > 0 với mọi x hay
VT > 0 .
Vậy BĐT x2 - 2x + 3 > 0 đúng .
Các câu còn lại tương tự .
Chúc bn học tốt !!!!!!!!
A) x2+4y22+z22-4x-6z+15>0 <=> (x2-2×2×x+22)+4y2+(z2-2×3×z+32) +(15 -22-32) >0
<=>(x-2)2+4y22+(z-3)2
B) giải
(2X)2+ 2×2X×1 +1 >=0 với mọi X ( (2x+1)2 )
=> (2x+1)2+2 >0
1) \(\left(5-2x\right)\left(2x+7\right)=4x^2-25\)
\(\Leftrightarrow 4x^2 + 14x - 10x - 35=4x^2-25\)
\(\Leftrightarrow4x^2-4x^2+14x-10x=35-25\)
\(\Leftrightarrow4x=10\)
\(\Leftrightarrow x=\dfrac{10}{4}=\dfrac{5}{2}\)
Vậy \(x=\dfrac{5}{2}\)
2) \(x^2-4x+5\)
\(=-(4x-x^2-5 )\)
\(= -[-(x^2-4x)-5 ]\)
\(=-[ -(x^2-2x.2+4-4)-5 ]\)
\(= -[-(x-2)^2+4-5 ]\)
\(= -[-(x-2)^2-1 ]\)
Vì \(-(x-2)^2 ≤0\)\(\forall x\) \(\Rightarrow\) \(-(x-2)^2-1<0\) \(\forall x\)
\(\Rightarrow\)\(-[-(x-2)^2-1 ]>0\)\(\forall x\)
\(\Rightarrow x^2-4x+5>0\)\(\forall x\)
a) Ta có:
\(x^2+4x+5\)
\(=x^2+2.x.2+4+1\)
\(=\left(x+2\right)^2+1\)
Vì \(\left(x+2\right)^2\ge0\forall x\)
\(\Rightarrow\left(x+2\right)^2+1>0\forall x\)
\(\Rightarrow x^2+4x+5>0\forall x\)
b) Ta có:
\(x^2-x+1\)
\(=x^2-2.x.\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{4}+1\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
Vì \(\left(x-\dfrac{1}{2}\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)
\(\Rightarrow x^2-x+1>0\forall x\)
c) Ta có:
\(12x-4x^2-10\)
\(=-\left(4x^2-12x+10\right)\)
\(=-\left[\left(2x\right)^2-2.2x.3+9+1\right]\)
\(=-\left(2x-3\right)^2-1\)
Vì \(-\left(2x-3\right)^2\le0\forall x\)
\(\Rightarrow-\left(2x-3\right)^2-1< 0\forall x\)
\(\Rightarrow12x-4x^2-10< -1\)
Câu a :
\(x^2+4x+5\)
\(=\left(x^2+4x+4\right)+1\)
\(=\left(x+2\right)^2+1\)
Do : \(\left(x+2\right)^2\ge0\Rightarrow\left(x+2\right)^2+1\ge1>0\)
Vậy \(x^2+4x+5>0\left(\forall x\right)\)
Câu b :
\(-x^4+4x^2-7\)
\(=\left(-x^4+4x^2-4\right)-3\)
\(=-\left(x^4-4x^2+4\right)-3\)
\(=-\left(x-2\right)^2-3\)
Do : \(-\left(x-2\right)^2\le0\Rightarrow-\left(x-2\right)^2-3\le-3< 0\)
Vậy \(-x^4+4x^2-7< 0\left(\forall x\right)\)
Wish you study well !!
a) \(-\left(x^2-6x+10\right)=-\left(x^2-6x+9+1\right)=-\left[\left(x-3\right)^2+1\right]\le-1< 0\forall x\)
BĐT đúng
b) \(x^2+x+1=x^2+2.x.\frac{1}{2}+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\)
BĐT đúng
c)Dấu "=" ko xảy ra???
\(=\left(4x^2+2.2x.y+y^2\right)+2\left(2x+y\right)+1+2\)
\(=\left(2x+y\right)^2+2.\left(2x+y\right).1+1+1\)
\(=\left(2x+y+1\right)^2+1\ge1>0\) (đpcm)
a. −x2 + 6x - 10
= −(x2 − 6x) − 10
= −(x2 − 2.x.3 + 32 − 9) − 10
= −(x − 3)2 + 9 − 10
= −(x − 3)2 −1
Vì (x − 3)2 ≥ 0 ∀ x ⇒ −(x − 3)2 ≤ 0 ⇒ −(x − 3)2 −1 ≤ −1
Vậy −(x − 3)2 −1 < 0 ⇒ −x2 + 6x - 10 luôn âm với mọi x
Ta có :
\(4x^2+4x+2>0\)
\(\Leftrightarrow\)\(\left(4x^2+4x+1\right)+1>0\)
\(\Leftrightarrow\)\(\left[\left(2x\right)^2+2.2x.1+1^2\right]+1>0\)
\(\Leftrightarrow\)\(\left(2x+1\right)^2+1\ge1>0\) ( luôn đúng )
Vậy \(4x^2+4x+2>0\)
Chúc bạn học tốt ~
thank bạn nha