K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
TL
27 tháng 6 2016
a) \(3^{n+2}+3^n-2^{n+2}-2^n\)
\(=3^n\left(3^2+1\right)-2^n\left(2^2+1\right)\)
\(=3^n.10-2^n.5\)
\(=3^n.10-2^{n-1}.2.5\)chia hết cho 10
b)\(3^{n+3}+3^{n+1}+2^{n+3}+2^{n+2}\)
\(=3^{n+1}\left(3^2+1\right)+2^{n+2}\left(2+1\right)\)
\(=3^{n+1}.10+2^{n+2}.3\)
\(=3^n.3.2.5+2^{n+1}.2.3\)chia hết cho 6
TT
2
1 tháng 9 2018
\(3^{n+2}-2^{n+2}+3^n-2^n\)
\(=3^n\left(3^2+1\right)-2^{n+2}-2^n\)
\(=10.3^n-5.2^n\)
Do 2^n chia hết cho 2 suy ra 5.2^n chia hết cho 10 nên:
\(10.3^n-5.2^n⋮10\left(ĐCCM\right)\)
1 tháng 9 2018
\(3^{n+3}+3^{n+1}+2^{n+3}+2^{n+2}\)
\(=3^n\left(3^3+3\right)+2^n\left(2^3+2^2\right)\)
\(=30.3^n+12.2^n\)
\(=6\left(5.3^n+2^{n+1}\right)\)
ta có \(3^{n+3}+3^{n+1}+2^{n+3}+2^{n+3}+2^{n+2}\)
\(\Rightarrow3k+3k+2k+2k+2k\)
\(=k\left(3+3+2+2+2\right)\)
\(=12k=6.2k\) chia hết cho 6