K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 10 2020

Cho xin phép sửa đề lại :

CMR : \(3^{n+3}+2^{n+1}+3^{n+1}+2^{n+2}⋮6\)

Ta có : \(3^{n+3}+2^{n+1}+3^{n+1}+2^{n+2}=3^n\cdot3^3+2^n\cdot2+3^n\cdot3+2^n\cdot2^2\)

\(=3^n\cdot27+2^n\cdot2+3^n\cdot3+2^n\cdot4\)

\(=3^n\left(27+3\right)+2^n\left(2+4\right)\)

\(=3^n\cdot30+2^n\cdot6=6\left(5\cdot3^n+2^n\right)⋮6\)(đpcm)

Còn nếu có hai phần 2n+2 thì nó chia hết cho 2 chứ không phải chia hết cho 6

23 tháng 10 2016

bài này dễ

  3n+3+3n+1+2n+3+2n+2

=3n.33+3n.3+2n.23+2n.22

=3n.(33+3)+2n.(23+22)

=3n.(27+3)+2n.(8+4)

=3n.30+2n.12

vì 3n.30 chia hết cho 6

   2n.12 chia hết cho 6

=> 3n+3+3n+1+2n+3+2n+2 chia hết cho 6

7 tháng 12 2016

Ta có : 3n + 2 - 2n + 2 + 3n - 2n

<=>  3n + 2 - 2n + 2 + 3n - 2= (3n + 2 + 3) - (2n + 2 + 2n)

=> 3n + 2 - 2n + 2 + 3n - 2= 3n.(32 + 1) - 2n - 1.(23 + 2)

=> 3n + 2 - 2n + 2 + 3n - 2= 3. 10 - 2n - 1.10 

=>  3n + 2 - 2n + 2 + 3n - 2 = 10.(3n - 2n - 1)

Mà 3n - 2n - 1 E N*

Nên  3n + 2 - 2n + 2 + 3n - 2chia hết cho 10 cới mọi n e N*

7 tháng 7 2015

\(3^{n+3}+3^{n+1}+2^{n-3}\), thế này phải không?

 

20 tháng 2 2019

Ta cần chứng minh:\(1^3+2^3+3^3+....+n^3=\left[\frac{n\left(n+1\right)}{2}\right]^2\)

Với \(n=1\Rightarrow1=1\)(đúng)

Giả sử bài toán đúng với \(n=k\left(n\inℕ^∗\right)\) thì ta có:

 \(1+2^3+3^3+...+k^3=\left[\frac{n\left(n+1\right)}{2}\right]^2\left(1\right)\)

Ta cần chứng minh đề bài đúng với \(n=k+1\) tức là:

\(1^3+2^3+3^3+....+n^3=\left[\frac{\left(k+1\right)\left(k+2\right)}{2}\right]^2\left(2\right)\)

Đặt \(A_{k+1}=1^3+2^3+...+\left(k+1\right)^3\)

\(=\left(\frac{k\left(k+1\right)}{2}\right)^2+\left(k+1\right)^3\) [theo (1)]

\(=\left[\frac{\left(k+1\right)\left(k+2\right)}{2}\right]^2\)

\(\Rightarrow\left(2\right)\) đúng

\(\Rightarrow\left(1\right)\) đúng.

Mà \(\left[\frac{n\left(n+1\right)}{2}\right]^2=\frac{n^2\cdot\left(n+1\right)^2}{4}\)

\(\Rightarrow1^3+2^3+...+n^3=\frac{n^2\cdot\left(n+1\right)^2}{4}\left(đpcm\right)\)

14 tháng 11 2015

\(3^{n+2}-2^{n+2}+3^n-2^n=3^{n+2}+3^n-\left(2^{n+2}+2^n\right)=3^n\left(3^2+1\right)-2^n\left(2^2+1\right)\)

\(=3^n.10-2^n.5=3^n.10-2^{n-1}.10=\left(3^n-2^{n-1}\right).10\) chia hết cho 10(đpcm)

tick tớ nhé

18 tháng 10 2015

Đây là dạng toán quy nạp nha

18 tháng 10 2015

Đây là dạng toán quy nạp nha