K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 9 2021

Sơ đồ con đường

Lời giải chi tiết

Bước 1. Phân tích sao cho tổng đó thành tích các thừa số trong đó có một thừa số chia hết cho 7.

Bước 2. Áp dụng tính chất chia hết của một tích.

Ta có:

A = 2 + 2 2 + 2 3 + … + 2 60     = 2 + 2 2 + 2 3 + 2 4 + 2 5 + 2 6 + … + 2 58 + 2 59 + 2 60     = 2. 1 + 2 + 2 2 + 2 4 . 1 + 2 + 2 2 + … + 2 58 . 1 + 2 + 2 2     = 2. 1 + 2 + 2 2 + 2 4 . 1 + 2 + 2 2 + … + 2 58 . 1 + 2 + 2 2     = 2 + 2 4 + … + 2 58 .7 ⇒ A ⋮ 7

15 tháng 9 2021

A=(2+2^2)+(2^3+2^4)+......+(2^59+2^60)

A=2.(1+2)+2^3.(1+2)+.......+2^59.(1+2)

A=2.3+2^3.3+.....+2^59.3

=>A chia hết cho 3

A=(2+2^2+2^3)+....+(2^58+2^59+2^60)

A=2(1+2+2^2)+...+2^58(1+2+2^2)

A=2x7+2^4x7+...+2^58x7

A=(2+2^4+....+2^58)X7

=>A chia hết cho 7

A=(2+2^2+2^3+2^4)+...+(2^57+2^58+2^59+2^60)

A=1x30+2^4x30+...+2^56x30

A=(1+2^4+...+2^56)x30

=>A chia hết cho 15

30 tháng 1 2017

* Chứng minh chia hết cho 3:

\(2+2^2+2^3+...+2^{60}\)

\(=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{59}+2^{60}\right)\)

\(=2.\left(1+2\right)+2^3.\left(1+2\right)+...+2^{59}.\left(1+2\right)\)

\(=2.3+2^3.3+...2^{59}.3\)

\(=3.\left(2+2^3+...+2^{59}\right)\Rightarrow⋮3\)

* Chứng minh chia hết cho 7 thì bạn gộp 3 số đầu tương tự như mẫu trên

* Chứng minh chia hết cho 15 thì bạn gộp 4 số đầu tương tự như mẫu trên

tk ủng hộ nhé

\(\)

30 tháng 1 2017

muốn chia hết cho thì bạn cứ gộp 2 số đầu vào nhau

muốn chia hết cho 7 thì bạn cứ gộp 3 số đầu vào nhau

muốn chia hết cho 15 thì bạn gộp 4 số đầu vào nhau

13 tháng 2 2016

=> A = ( 2 + 22 + 23 + 2) + ( 25 + 26 + 27 + 28 ) + ... + ( 257 + 258 + 259 + 260 )

=> A = 2.( 1 + 2 + 2.2 + 23 ) + 25.( 1 + 2 + 2.2 + 23 ) + .... + 257 .( 1 + 2 + 2.2 + 23 )

=> A = 2.15 + 25.15 + .... + 257.15

=> A = 15.( 2 + 25 + .... + 257 )

Vì 15 ⋮ 3 và 15 nên A ⋮ 3 và 15 ( đpcm )

=> A = ( 2 + 22 + 23 ) + ( 24 + 25 + 2) + ... + ( 258 + 259 + 260 )

=> A = 2.( 1 + 2 + 2.2 ) + 24.( 1 + 2 + 2.2 ) + .... + 258.( 1 + 2 + 2.2 )

=> A = 2.7 + 24.7 + ... + 258.7

=> A = 7.( 2 + 24 + ... + 258 )

Vì 7 ⋮ 7 nên A ⋮ 7 ( đpcm )

2 tháng 2 2017

A=2+2^2+...........+2^60

c\m c\h cho 3:2+2^2+....+2^60=2.(1+2)+........+2^59(1+2)

                                             =2.3+.........+2^59.3

                                              =(2+...+2^59).3

                                              =>A chia hết cho 3

cau tiếp tuong tu

3

2 tháng 2 2017

Ta chứng minh A chia hết cho 3:

A=(2+2^2)+(2^3+2^4)+...+(2^59+2^60)

  =2.(1+2)+2^3.(1+2)+...+2^59.(1+2)

  =2.3+2^3.3+...+2^59.3

  =3.(2+2^3+...+2^59) chia hết cho 3

Ta chứng minh A chia hết cho 7

A=(2+2^2+2^3)+(2^4+2^5+2^6)+...+(2^58+2^59+2^60)

  =2.(1+2+4)+2^4.(1+2+4)+...+2^58.(1+2+4)

  =2.7+2^4.7+...+2^58.7

  =7.(2+2^4+...+2^58) chia hết cho 7

Ta chứng minh A chia hết cho 15

A=(2+2^2+2^3+2^4)+(2^5+2^6+2^7+2^8)+...+(2^57+2^58+2^59+2^60)

  =2.(1+2+4+8)+2^5.(1+2+4+8)+....+2^57.(1+2+4+8)

  =2.15+2^5.15+..+2^57.15

  =15.(2+2^5+...+2^57) chia hết cho 15

 A = 2 + 2² + 2³ + 2⁴ + ... + 2⁵⁷ + 2⁵⁸ + 2⁵⁹ + 2⁶⁰ 

* Chứng minh A chia hết cho 3: 

Ta có: 

A = 2(1 + 2) + 2³(1 + 2) + ... + 2⁵⁷(1 + 2) + 2⁵⁹(1 + 2) 

= 3(2 + 2³ + ... + 2⁵⁷ + 2⁵⁹) 

⇒ A là bội của 3 

⇒ A chia hết cho 3 

* Chứng minh A chia hết cho 7: 

Ta có: 

A = 2(1 + 2 + 2²) + 2⁴(1 + 2 + 2²) + ... + 2⁵⁵(1 + 2 + 2²) + 2⁵⁸(1 + 2 + 2²) 

= 7(2 + 2⁴ + ... + 2⁵⁵ + 2⁵⁸) 

⇒ A là bội của 7 

⇒ A chia hết cho 7 

* Chứng minh A chia hết cho 15: 

Ta có 15 = 3 . 5, do A đã chia hết cho 3 nên chỉ cần chứng minh A chia hết cho 5: 

A= 2 + 2³ + 2² + 2⁴ + ... + 2⁵⁷ + 2⁵⁹ + 2⁵⁸ + 2⁶⁰ 

= 2(1 + 2²) + 2²(1 + 2²) + ... + 2⁵⁷(1 + 2²) + 2⁵⁸(1 + 2²) 

= 5(2 + 2² + ... + 2⁵⁷ + 2⁵⁸) 

⇒ A là bội của 5 

⇒ A chia hết cho 5 

⇒ A vừa chia hết cho 3 vừa chia hết cho 5 nên A chia hết cho 15 
Tick nhé 

25 tháng 1 2016

A =  2 + 2+ 23 + 24 + ... + 258 + 259 + 260

A = (2 + 2+ 23 + 24) + ... + (257 +  258 + 259 + 260)

A = (2.1 + 2.2 + 2.2.2 + 2.2.2.2) + ... + (257.1 +  257.2 + 257.2.2 + 257.2.2.2)

A = 2.(1 + 2 + 4 + 8) + ... + 257.(1 + 2 + 4 + 8)

A = 2.15 + ... + 257.15

A = 15.(2 + 25 + ... + 257) chia hết cho 15

=> A chia hết cho 15

 

A =  2 + 2+ 23 + ... + 258 + 259 + 260

A = (2 + 2+ 23) + ... + (258 + 259 + 260)

A = (2.1 + 2.2 + 2.2.2) + ... + (258.1 + 258.2 + 258.2.2)

A = 2.(1 + 2 + 4) + ... + 258.(1 + 2 + 4)

A = 2.7 + ... + 258.7

A = 7.(2 + 24 + ... + 258) chia hết cho 7

=> A chia hết cho 7

 

A = ( 2 + 2) + ( 2+ 2) + ... + ( 259 + 260 )

A = 2 . ( 1+2 ) + 23 . (1+2) + ... + 259 . (1+2)

A = 2.3 + 23.3 + ... + 259.3

A = (2+23+...+259) . 3

vì 3 chia hết cho 3 suy ra A chia hết cho 3

 

22 tháng 7 2016

A = 2 + 2+ 2+ .... + 260

   = (2 + 22) + (2+ 24) + .... + (259 + 260)

   = 2.(1 + 2) + 23.(1 + 2) + .... + 259.(1 + 2)

   = 2.3 + 23.3 + .... + 259.3

   = 3.(2 + 23 + ..... +259) chia hết cho 3

22 tháng 7 2016

chia hết cho 3

15 tháng 7 2015

Phương Thảo copy lại của Ngọc Thạch ở Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath

21 tháng 8 2015

Bài 1;

  A= 2+2^2+2^3+...+2^60= (2+2^2)+(2^3+2^4)+...+(2^59+2^60)

   = (2+2^2).(1+2^2+...+2^58)=6.(1+2^2+...+2^58) chia hết cho 3 (ĐPCM)

A= 2+2^2+2^3+...+2^60= (2+2^2+2^3)+(2^4+2^5+2^6)+...+(2^58+2^59+2^60)

   = (2+2^2+2^3).(1+2^3+...+2^57)= 14.(1+2^3+...+2^57) chia hết cho 7(ĐPCM)

Tương tự chứng minh A chai hết cho 15 ta có

A= (2+2^2+2^3+2^4)+(2^5+2^6+2^7+2^8)+...+(2^57+2^58+2^59+2^60)

   = (2+2^2+2^3+2^4).(1+2^4+...+2^56)= 30.(1+2^4+...+2^56) chia hết cho 15 (ĐPCM)

21 tháng 8 2015

A=2.(1+2)+2^3(1+2)+.................+2^59(1+2)

A=2.3+2^3.3+..............+2^59.3

A+3(2+.....+2^59) chia hết cho 3

A=2(1+2+2^2)+...................+2^58(1+2+4)

A=2.7+.........+2^58.7

A=7(2+........+2^58) chia hết cho 7

A=2(1+2+4+8)+...........+2^57(1+2+4+8)

A+2.15+.....+2^57.15

A=15(2+......+2^57) chia hết cho 15

bài hai thì tự đi tìm hiểu

19 tháng 11 2015

TA CÓ: A=(2+22)+(23+24)+(25+26)+27+...+260

              = 2(1+2)+23(1+2)+25(1+2)+27(1+2)+...+259(1+2)

              =   2.3+23.3+25.3+27.3+...+259.3

              = 3(2+23+25+27+...+259) chia hết cho3

vậy A chia hét cho 3

ta có A=(2+22+23)+(24+25+26)+27+...+260

           = 2(1+2+4) +24(1+2+4)+27(1+2+4)+...+258(1+2+4)

           = 2.7+24.7+27.7+...+258.7

           = 7(2+24+27+...+258) chia hết cho 7

vậy A chia hết cho 7

ta có A=(2+22+23+24)+(25+26+27+28)+...+260

          = 2(1+2+4+8)+25(1+2+4+8)+...+257(1+2+4+8)

          = 2.15+25.15+...+257.15

          = 15(2+25+...+257) chia hết cho 15

vậy A chia hết ch 15

ta có thể kết luận rằng A chia hết ch 3;7 và 15