Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn ơi đề thừa số 1 thì phải nha
A = (3+3^2)+(3^3+3^4)+....+(3^2011+3^2012)
= 3.(1+3)+3^3.(1+3)+....+3^2011.(1+3)
= 4+3^3.4+.....+3^2011.4
= 4.(3+3^3+....+3^2011) chia hết cho 4
k mk nha
4a=4+42+43+......+42013
4a-a=(4+42+43+......+42013)-(1+4+42+......+42012)
3a=42013-1
a=42013-1
3
\(A=3^1+3^2+...+3^{2012}\)
\(A=3\left(1+3\right)+...+3^{2011}\left(1+3\right)\)
\(A=3.4+...+3^{2011}.4\)
\(A=4\left(3+...+3^{2011}\right)\)
\(\Rightarrow A⋮4\)
hok tốt!!
\(A=\left(3^1+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{2011}+3^{2012}\right)\)
\(A=\left(3^1.1+3^1.3\right)+\left(3^3.1+3^3.3\right)+...+\left(3^{2011}.1+3^{2011}.3\right)\)
\(A=3^1.\left(1+3\right)+3^3.\left(1+3\right)+...+3^{2011}.\left(1+3\right)\)
\(A=\left(1+3\right).\left(3^1+3^3+...+3^{2011}\right)\)
\(A=4.\left(3^1+3^3+...+3^{2011}\right)\)
Vậy \(A⋮11\)
Ta có :
S = 3 + 32 + 33 + ... + 32012 ( có 2012 số hạng )
=> S = ( 3 + 32 ) + ( 33 + 34 ) + ... + ( 32011 + 32012 ) ( có đủ 1006 nhóm )
=> S = ( 3 + 32 ) + 32 . ( 3 + 32 ) + ... + 32010 . ( 3 + 32 )
=> S = 12 + 32 . 12 + ... + 32010 . 12
=> S = 4 . 3 . ( 1 + 32 + ... + 32010 ) ⋮ 4
Vậy S ⋮ 4
Ta có:M=1+2+22+...+22012+22013=(1+2)+(22+23)+...+(22012+22013)
=3+22.(1+2)+....+22012.(1+2)
=3+22.3+....+22012.3
=3.(1+22+23+...+22012) chia hết cho 3
=>M chia hết cho 3
Ta thấy: 1+2=3; 22+23=22.(1+2) =22.3...................; 22012+22013=22012.(1+2)=22012.3
(Tất cả những tổng trên đều chia hết cho 3)
---> (1+2)+(22+23)+......+ (22012+22013)= 3. (1+22+24+...+22012) chia hết cho 3
1)Có 7x+4y chia hết cho 37 =>7x chia hết cho 37 ; 4y chia hết cho 37 (37 là số nguyên tố)
Vì 7 và 4 không chia hết cho 37 => x và y chia hết cho 37
=> 13x chia hết cho 37 ; 18y chia hết cho 37
=> 13x+18y chia hết cho 37
2) A = 1/2+3/2+3/2^2+...+3/2^2012
=>2A = 1+3+3/2+...+3/2^2011
=>A = 4 - (1/2+3/2^2011)
Lấy B - A là xong
A = 30 + 31 + 32 + 33 + ... + 32011 + 32012
A = 1+( 31 + 32 + 33 + ... + 32011 + 32012
A-1 = 31 + 32 + 33 + ... + 32011 + 32012
A-1 có 2012 số hạng ,nhóm 4 số hạng liên tiếp với nhau , ta được 503 nhóm :
A-1=3(1+3+3^2+3^3)+3^5(1+3+3^2+3^3)+....+3^2009(1+3+3^2+3^3)=40.(3+3^5+...+3^2009)
=> (A-1) chia hết cho 40