13123456789−1  
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 3 2020

13123456789 nha !!!

22 tháng 3 2020

ta có: \(13^{3^n}-1^n=2197^n-1^n⋮\left(2197-1\right)=2196\) (với \(n=\frac{123456789}{3}\))vì \(2196⋮183\)suy ra: \(2197^n-1⋮183\)(Đpcm)

2 tháng 12 2016

hrgncl

28 tháng 3 2017

a) M =1+3+32+33+......+3118+3119
M = ( 1+3+32 ) +...+ ( 3117 + 3118+3119 )
M = 1. ( 1+3+32 ) + ... + 3117 . ( 3117 + 3118+3119 )
M = ( 1+3+32 ) .( 1 + ... + 3117 )
M = 13 . ( 1 + ... + 3117 ) \(⋮\) 13 (đpcm )

28 tháng 3 2017

b) Ta có:
\(\dfrac{1}{2^2}< \dfrac{1}{1.2}\)
\(\dfrac{1}{3^2}< \dfrac{1}{2.3}\)
\(\dfrac{1}{4^2}< \dfrac{1}{3.4}\)
...
\(\dfrac{1}{2009^2}< \dfrac{1}{2008.2009}\)
\(\dfrac{1}{2010^2}< \dfrac{1}{2009.2010}\)

=> \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{2009^2}+\dfrac{1}{2010^2}\) < \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2008.2009}+\dfrac{1}{2009.2010}\) (1)
Biến đổi vế trái:
\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2008.2009}+\dfrac{1}{2009.2010}\)

= \(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2008}-\dfrac{1}{2009}+\dfrac{1}{2009}-\dfrac{1}{2010}\)
= \(1-\dfrac{1}{2010}\)
= \(\dfrac{2009}{2010}< 1\) (2)

Từ (1) và (2), suy ra :
\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{2009^2}+\dfrac{1}{2010^2}\) < 1 hay:
N < 1

4 tháng 12 2017

a) C=\(\left(1+3+3^2\right)+....+\left(3^9+3^{10}+3^{11}\right)\)

=13+.....+3^11 chia het cho 13

nen C=1+3+...+3^11 chia het cho 13

4 tháng 12 2017

C=\(\left(1+3+3^2+3^3\right)+.....+\left(3^8+3^9+3^{10}+3^{11}\right)\)=40+....+\(\left(3^8+3^9+3^{10}+3^{11}\right)\)\(⋮\)40

nên C=\(1+3+3^2+....+3^{11}⋮40\)

18 tháng 3 2017

a, Ta có:\(\overline{abcdeg}\)=\(\overline{ab}.10000+\overline{cd}.100+\overline{eg}\)

\(=\overline{ab}.9999+\overline{ab}+\overline{cd}.99+\overline{cd}+\overline{eg}\)

\(=\left(\overline{ab}.9999+\overline{cd}.99\right)+\left(\overline{ab}+\overline{cd}+\overline{eg}\right)\)

Ta thấy \(\left(\overline{ab}.9999+\overline{cd}.99\right)⋮11\)

\(\left(\overline{ab}+\overline{cd}+\overline{eg}\right)⋮11\)

Vậy \(\overline{abcdeg}⋮11\)

30 tháng 3 2017

b, Ta có: 72=8.9

\(\Rightarrow10^{28}+8⋮8;9\)

Ta thấy: \(10^{28}\)gồm 1 chữ số 1 và 28 chữ số 0 đứng sau nó

\(\Rightarrow10^{28}+8\) gồm 1 chữ số 1, 27 chữ số 0 đứng sau và chữ số 8 ở tận cùng.

\(\Rightarrow10^{28}+8\) có tổng các chữ số là 9

\(\Rightarrow10^{28}+8⋮9\) (1)

Ta xét đến 3 chữ số tận cùng của \(10^{28}+8\)​là 0, 0, 8 và tổng của 3 chữ số đó là 8.

Mà 8\(⋮\)8 nên \(10^{28}+8⋮8\) (2)

Từ (1) và (2) suy ra \(10^{28}+8⋮72\)

a) 102k - 1 = 102k -10k + 10k -1 = 10k ( 10k -1 ) + ( 10k -1 )  Chia hết cho 19

b) 103k -1 = 103k - 10k + 10k -1 =10k ( 102k -1 ) + ( 10k -1 ) Chia hết cho 19

24 tháng 9 2018

a) Vì \(10^k-1⋮19\Rightarrow10^k-1=19n\left(n\inℕ\right)\)

                                \(\Rightarrow10^k=19n+1\)

                                \(\Rightarrow10^{2k}=\left(10^k\right)^2=\left(19n+1\right)^2=361n^2+38n+1\)

                                \(\Rightarrow10^{2k}-1=361n^2+38n+1-1=361n^2+38n⋮19\)

Vậy.................

b) Ý này bạn làm giống vậy nha

19 tháng 7 2017

1)

\(A=156+273+533+y\)

\(A=962+y\)

\(962⋮13\)

Để \(A⋮13\rightarrow y⋮13\)

\(A⋮̸13\rightarrow y⋮̸13\)

2)

\(A=1+3+3^2+...+3^{11}\)

* để A chia hết cho 13:

\(A=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^9+3^{10}+3^{11}\right)\)

\(A=1\left(1+3+3^2\right)+3^3\left(1+3+3^2\right)+...+3^9\left(1+3+3^2\right)\)

\(A=\left(1+3^3+...+3^9\right)\left(1+3+3^2\right)\)

\(A=13\left(1+3^3+3^9\right)⋮13\rightarrowđpcm\)

* để A chia hết cho 40:

\(A=\left(1+3+3^2+3^3\right)+\left(3^4+3^5+3^6+3^7\right)+...+\left(3^8+3^9+3^{10}+3^{11}\right)\)

\(A=1\left(1+3+3^2+3^3\right)+3^4\left(1+3+3^2+3^3\right)+...+3^8\left(1+3+3^2+3^3\right)\)\(A=\left(1+3^4+...+3^8\right)\left(1+3+3^2+3^3\right)\)

\(A=40\left(1+3^4+...+3^8\right)⋮40\rightarrowđpcm\)

3)

\(25^{24}-25^{23}\)

\(=25^{23}.25-25^{23}.1\)

\(=25^{23}.\left(25-1\right)\)

\(=25^{23}.24\)

\(=25^{23}.4.6⋮6\rightarrowđpcm\)

4) Gọi 5 số tự nhiên liên tiếp đó là a;a+1;a+2;a+3;a+4

Tích của 5 số tự nhiên liên tiếp là :

\(a\left(a+1\right)\left(a+2\right)\left(a+3\right)\left(a+4\right)\)

Ta có: \(a+1;a+3\) hoặc \(a+2;a+4\)là 2 số chẵn liên tiếp nên sẽ chia hết cho 8

5 số tự nhiên liên tiếp luôn có 1 số chia hết cho 5

a;a+1;a+2 luôn sẽ có 1 số chia hết cho 3

5 số tự nhiên liên tiếp đó chia hết cho 3;5;8

\(\Rightarrow⋮120\rightarrowđpcm\)

18 tháng 7 2017

khó quábucminhkhocroi

14 tháng 7 2016

1. a) 2B = 1 + 1/2 + 1/22+...+1/298

B - B = (1+1/2+...+1/298) - (1/2+....+1/299)

B = 1 - 299 => B < 1

b) Làm tương tự như câu a, ra là (1 - 1/399) : 2 = 1/2 - 1/2.399(C bé hơh 1/2)

14 tháng 7 2016

1. a). Theo đầu bài ta có:
 \(B=\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+...+\left(\frac{1}{2}\right)^{98}+\left(\frac{1}{2}\right)^{99}\)
\(\Leftrightarrow B=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{98}}+\frac{1}{2^{99}}\)
\(\Leftrightarrow B=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{97}}+\frac{1}{2^{98}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{98}}+\frac{1}{2^{99}}\right)\)
\(\Leftrightarrow B=1-\frac{1}{2^{99}}< 1\)( đpcm )

19 tháng 12 2018

https://hoc247.net/hoi-dap/toan-6/chung-minh-s-1-2-2-2-2-3-2-4-2-5-2-6-2-7-chia-het-cho-3-faq250754.html

20 tháng 10 2019

S= \(1+2+2^2+...+2^7\)

2S= \(2\cdot\left(2+2^2+...+2^7\right)\)

2S= \(2^1+2^2+...2^8\)

1S= 2S - S = \(\left(2^1+2^2+...2^8\right)-\left(1+2+2^2+...+2^7\right)\)

1S= \(2^1+2^2+...+2^8-1-2-2^2-...-2^7\)

1S= \(2^8-1\)

1S= \(256-1\)

1S= 255

=> 1S chia hết cho 3

Mà 1S= S

=> S chia hết cho 3

Vậy S chia hết cho 3