\(100-\left(1+\frac{1}{2}+\frac{1}{3}+.....+\frac{1}{100}\right)=\frac{1}...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 1 2017

\(100-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)

\(=\left(1+1+1+...+1\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)

\(=\left(1-1\right)+\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{3}\right)+...+\left(1-\frac{1}{100}\right)\)

\(=\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...+\frac{99}{100}\) ( ĐPCM )

9 tháng 5 2017

Ta có :\(100-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)

=\(\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...+\frac{99}{100}=\)\(\left(1-1\right)+\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{3}\right)\)\(+...+\left(1-\frac{1}{100}\right)\)

=\(\left(1+1+1+....+1\right)\)\(-\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)\)

=             \(99-\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)\)

=  \(100-1-\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)\)

=\(100-\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)\)= vế trên (đpcm)

9 tháng 5 2017

\(S=100-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)
\(S=\left(1+1+...+1\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)
\(S=\left(1-1\right)+\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{3}\right)+...+\left(1-\frac{1}{100}\right)\)
\(S=\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...+\frac{99}{100}\)
\(\RightarrowĐPCM\)

22 tháng 2 2017

Giả sử \(100-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)=\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}\)

\(\Rightarrow100=\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}+1+\frac{1}{2}+...+\frac{1}{100}\)

\(\Rightarrow100=1+\left(\frac{1}{2}+\frac{1}{2}\right)+\left(\frac{1}{3}+\frac{2}{3}\right)+...+\left(\frac{99}{100}+\frac{1}{100}\right)\)

\(\Rightarrow100=1+1+1+...+1\) (100 chữ số 1)

\(\Rightarrow100=100\)

Vậy \(100-\left(1+\frac{1}{2}+...+\frac{1}{100}\right)=\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}\)

25 tháng 2 2019

\(100-\left(1+\frac{1}{3}+....+\frac{1}{100}\right)\)

\(=1+\left(1-1\right)+\left(1-\frac{1}{3}\right)+.......+\left(1-\frac{1}{100}\right)\)

\(=1+\frac{2}{3}+......+\frac{99}{100}\left(DPCM\right)\)

30 tháng 7 2015

1/2+2/3+...+99/100=1-1/2+1-1/3+...+1-1/100=99-(1/2+1/3+,...+1/100)=100-(1+1/2+...+1/100)

16 tháng 3 2019

Nguyen svtkvtm Khôi Bùi Nguyễn Việt Lâm Lê Anh Duy Nguyễn Thành Trương DƯƠNG PHAN KHÁNH DƯƠNG An Võ (leo) Ribi Nkok Ngok Bonking ...

ai giúp mk ik

mk đg cần gấp,còn nhìu đề chx lm

27 tháng 6 2018

Nhận xét: mẫu số của mỗi phân số thuộc số bị trừ trong phép tính trên là số thứ tự của phân số đó trong dãy trên.

Từ đó, ta biết được rằng dãy trên ( số bị trừ có 100 phân số )

\(100-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)=\left(1+1+1+...+1\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)

( Tách 100 thành 100 số 1 )

                                                                          \(=\left(1-1\right)+\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{3}\right)+...+\left(1-\frac{1}{100}\right)\)

                                                                          \(=\frac{1}{2}+\frac{2}{3}+\frac{3}{4}...+\frac{99}{100}\left(đpcm\right).\)

\(100-\left(1+\frac{1}{2}+...+\frac{1}{100}\right)=\left(1-1\right)+\left(1-\frac{1}{2}\right)+...+\left(1-\frac{1}{100}\right)\)

\(=0+\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}=\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}\)

\(\RightarrowĐPCM\)

 

1 tháng 5 2015

Để chứng minh 100 - \(\left(1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{100}\right)=\frac{1}{2}+\frac{2}{3}+....+\frac{99}{100}\)

Thì ta cần chứng minh 100 = \(\left(1+\frac{1}{2}+\frac{1}{3}+.....+\frac{1}{100}\right)+\left(\frac{1}{2}+\frac{2}{3}+....+\frac{99}{100}\right)\)

Biến đổi 

Vế phải = \(1+\left(\frac{1}{2}+\frac{1}{2}\right)+\left(\frac{1}{3}+\frac{2}{3}\right)+....+\left(\frac{1}{100}+\frac{99}{100}\right)\)

            = 1 + 1 + 1 + ...1 (100 số 1) = 100 = Vế trái (đpcm)