Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\) ( x, y , z khác 0 ) (@)
<=> \(\left(\frac{1}{x}+\frac{1}{y}\right)+\left(\frac{1}{z}-\frac{1}{x+y+z}\right)=0\)
<=> \(\left(x+y\right)\left(\frac{1}{xy}+\frac{1}{z\left(x+y+z\right)}\right)=0\)
<=> x + y = 0 (1)
hoặc: \(\frac{1}{xy}+\frac{1}{z\left(x+y+z\right)}=0\)(2)
(2) <=> \(zx+zy+z^2+xy=0\)
<=> \(z\left(x+z\right)+y\left(x+z\right)=0\)
<=> \(\left(x+z\right)\left(y+z\right)=0\)
<=> x + z = 0 hoặc y + z = 0
<=> x = - z hoặc y = -z
(1) <=> x = - y
Vậy: (@) <=> x = - y hoặc y = -z hoặc z = - x
Vì vị trí của x, y, z có vai trò như nhau. G/S: x = - y
khi đó: \(\frac{1}{x^{2017}}+\frac{1}{y^{2017}}+\frac{1}{z^{2017}}=\frac{1}{\left(-y\right)^{2017}}+\frac{1}{y^{2017}}+\frac{1}{z^{2017}}=\frac{1}{z^{2017}}\)
và: \(\frac{1}{x^{2017}+y^{2017}+z^{2017}}=\frac{1}{z^{2017}}\)
Do vậy: \(\frac{1}{x^{2017}}+\frac{1}{y^{2017}}+\frac{1}{z^{2017}}=\)\(\frac{1}{x^{2017}+y^{2017}+z^{2017}}\)
1) VT= \(\frac{1}{1+x+xy}+\frac{x}{x+xy+1}+\frac{xyz}{xyz+z+zx}\)
\(=\frac{1}{1+x+xy}+\frac{xy}{1+x+xy}+\frac{xyz}{z\left(x+xy+1\right)}\)
\(=\frac{1}{1+x+xy}+\frac{x}{1+x+xy}+\frac{xy}{1+x+xy}\)
\(=\frac{1+x+xy}{1+x+xy}=1\)
Bài 2 giả thiết trên tử làm mell gì có bình phương, nếu có thì tính làm gì nữa :D, kết quả là 2016(x+y+z)
Từ x+y+z=3 ta có:
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)
\(\frac{\Leftrightarrow xy+yz+zx}{xyz}=\frac{1}{x+y+z}\)
Nhân chéo ta có:
\(\left(xy+yz+zx\right)\left(x+y+z\right)=xyz\)
\(\Leftrightarrow x^2y+xyz+x^2z+y^2x+y^2z+xyz+xyz+z^2y+z^2x=xyz\)
\(\Leftrightarrow x^2y+x^2z+y^2z+y^2x+z^2x+z^2y+2xyz=0\)
\(\Leftrightarrow\left(x^2y+x^2z+y^2x+xyz\right)+\left(y^2z+z^2x+z^2y+xyz\right)=0\)
\(\Leftrightarrow x\left(xy+xz+y^2+yz\right)+z\left(xy+xz+y^2+yz\right)=0\)
\(\Leftrightarrow\left(x+z\right)\left(xy+xz+y^2+yz\right)=0\)
\(\Leftrightarrow\left(x+z\right)\left[\left(xy+y^2\right)+\left(xz+yz\right)\right]=0\)
\(\Leftrightarrow\left(x+z\right)\left[y\left(x+y\right)+z\left(x+y\right)\right]=0\)
\(\Leftrightarrow\left(x+z\right)\left(y+z\right)\left(x+y\right)=0\)
Suy ra x+z=0 hoặc y+z=0 hoặc x+y=0
Với x+z=0 ta đc y=3
Với y+z=0 ta đc x=3
Với x+y=0 ta đc z=3
Từ đó suy ra đccm
Bài này áp dụng BĐT này nhé , với x,y > 0 ta có :
\(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\) ( Cách chứng minh thì chuyển vế quy đồng nhé )
Áp dụng vào bài toán ta có :
\(\frac{1}{2x+y+z}=\frac{1}{4}\left(\frac{4}{\left(x+y\right)+\left(z+x\right)}\right)\le\frac{1}{4}\left(\frac{1}{x+y}+\frac{1}{z+x}\right)=\frac{1}{16}\left(\frac{4}{x+y}+\frac{4}{z+x}\right)\)
\(\le\frac{1}{16}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{x}\right)\)
\(\Rightarrow\frac{1}{2x+y+z}\le\frac{1}{16}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{x}\right)\)
Tương tự ta có :
\(\frac{1}{x+2y+z}\le\frac{1}{16}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{y}+\frac{1}{z}\right)\)
\(\frac{1}{x+y+2z}\le\frac{1}{16}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{z}\right)\)
Do đó : \(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\le\frac{1}{16}\left(\frac{4}{x}+\frac{4}{y}+\frac{4}{z}\right)=\frac{1}{4}\left(x+y+z\right)=1\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=z=\frac{3}{4}\) (đpcm)
Ta có: \(\frac{1}{2x+y+z}\le\frac{1}{4}\left(\frac{1}{x+y}+\frac{1}{x+z}\right)\le\frac{1}{16}\left(\frac{2}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
Tương tự: \(\frac{1}{x+2y+z}\le\frac{1}{16}\left(\frac{1}{x}+\frac{2}{y}+\frac{1}{z}\right)\)
\(\frac{1}{x+y+2z}\le\frac{1}{16}\left(\frac{1}{x}+\frac{1}{y}+\frac{2}{z}\right)\)
Cộng vế theo vế có: \(VT\le\frac{1}{16}\left(\frac{4}{x}+\frac{4}{y}+\frac{4}{z}\right)=1\)
Áp dụng BĐ Svac-xơ, ta có
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}=\frac{9}{6}=\frac{3}{2}\left(ĐPCM\right)\)
^_^
\(\frac{x}{y}=\frac{x}{t}\Leftrightarrow\frac{x}{z}=\frac{y}{t}=\frac{x-y}{z-t}\)
\(\Leftrightarrow\frac{x^{2017}}{z^{2017}}=\frac{y^{2017}}{t^{2017}}=\frac{\left(x-y\right)^{2017}}{\left(z-t\right)^{2017}}=\frac{x^{2017}+y^{2017}}{z^{2017}+t^{2017}}\)
\(\Rightarrow\left(đpcm\right)\)
P/s: Ko chắc
Ta có \(\hept{\begin{cases}\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{2017}\\\frac{1}{x+y+z}=\frac{1}{2017}\end{cases}}\)
suy ra \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)
\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}-\frac{1}{x+y+z}=0\)
\(\Leftrightarrow\frac{x+y}{xy}+\frac{x+y+z-z}{z\left(x+y+z\right)}=0\)
\(\Leftrightarrow\frac{x+y}{xy}+\frac{x+y}{z\left(x+y+z\right)}=0\)
\(\Leftrightarrow\left(x+y\right)\left(\frac{1}{xy}+\frac{1}{z\left(x+y+z\right)}\right)=0\)
\(\Leftrightarrow\left(x+y\right)\left(\frac{xz+yz+z^2+xy}{xy\left(x+y+z\right)}\right)=0\)
\(\Leftrightarrow\left(x+y\right)\left(xz+yz+z^2+xy\right)=0\)
\(\Leftrightarrow\left(x+y\right)\left(z\left(y+z\right)+x\left(y+z\right)\right)=0\)
\(\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(x+z\right)=0\)
Nếu x + y = 0 thì z = 2017.
Nếu y + z = 0 thì x = 2017.
Nếu x + z = 0 thì y = 2017.