Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(x^3=\left(9+4\sqrt{5}\right)+\left(9-4\sqrt{5}\right)+3\sqrt[3]{\left(9+4\sqrt{5}\right)\left(9-4\sqrt{5}\right)}\)\(\left(\sqrt[3]{9-4\sqrt{5}}+\sqrt[3]{9-4\sqrt{5}}\right)\)
\(\Leftrightarrow x^3=18+3x\)
\(\Leftrightarrow x^3-3x-18x=0\)
chứng minh: \(\sqrt[3]{9+4\sqrt{5}}+\sqrt[3]{9-4\sqrt{5}}\) là nhiệm của phưng trình \(x^3-3x-18=0\)
Ta có :
\(x=\sqrt[3]{9+4\sqrt{5}}+\sqrt[3]{9-4\sqrt{5}}\)
\(\Leftrightarrow x^3=\left(\sqrt[3]{9+4\sqrt{5}}+\sqrt[3]{9-4\sqrt{5}}\right)^3\)
\(=18+3\sqrt[3]{\left(9+4\sqrt{5}\right)^2\left(9-4\sqrt{5}\right)}+3\sqrt[3]{\left(9+4\sqrt{5}\right)\left(9-4\sqrt{5}\right)^2}\)
\(=18+3\sqrt{\left(9+4\sqrt{5}\right)\left(9^2-4\sqrt{5}^2\right)}+3\sqrt{\left(9-4\sqrt{5}\right)\left(9^2-4\sqrt{5}^2\right)}\)
\(=18+3\sqrt[3]{9+4\sqrt{5}}+3\sqrt[3]{9-4\sqrt{5}}=18+3x\)
⇔ x3 - 3x - 18 = 0 ⇒ đpcm
a) + \(VT=\sqrt{x^2+2x+10}+x^2+2x+1+7\)
\(=\sqrt{x^2+2x+1}+\left(x+1\right)^2+7>0\forall x\)
=> ptvn
d) ĐK : \(x^2+7x+7\ge0\)
Đặt \(t=\sqrt{x^2+7x+7}\ge0\) \(\Rightarrow t^2=x^2+7x+7\)
\(pt\Leftrightarrow3\left(x^2+7x+7\right)-3+2\sqrt{x^2+7x+7}-2=0\)
\(\Leftrightarrow3t^2+2t-5=0\Leftrightarrow\left(3t+5\right)\left(t-1\right)=0\)
\(\Leftrightarrow t=1\) ( do \(3t+5>0\forall t\ge0\) )
\(\Leftrightarrow x^2+7x+1=0\Leftrightarrow x^2+7x+6=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+6\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-6\end{matrix}\right.\) ( TM )
f) ĐK : \(x\ge1\)
Đặt \(\left\{{}\begin{matrix}a=\sqrt{x-1}\ge0\\b=\sqrt{x+3}\ge0\end{matrix}\right.\) thì pt trở thành :
\(a+b-ab-1=0\)
\(\Leftrightarrow\left(a-1\right)-b\left(a-1\right)=0\)
\(\Leftrightarrow\left(1-b\right)\left(a-1\right)=0\Leftrightarrow\left[{}\begin{matrix}a=1\\b=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-1}=1\\\sqrt{x+3}=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\left(TM\right)\\x=-2\left(KTM\right)\end{matrix}\right.\)
\(\sqrt{16x+16}-\sqrt{9x+9}+\sqrt{4x+4}+\sqrt{x+1}=16\)
\(\Leftrightarrow4\sqrt{x+1}-3\sqrt{x+1}+2\sqrt{x+1}+\sqrt{x+1}=16\)
\(\Leftrightarrow4\sqrt{x+1}=16\)
\(\Leftrightarrow\sqrt{x+1}=4\)
<=> x + 1 = 16
<=> x = 15 (nhận)
~ ~ ~
\(\sqrt{4x+20}-3\sqrt{5+x}+\dfrac{4}{3}\sqrt{9x+45}=6\)
\(\Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+4\sqrt{x+5}=6\)
\(\Leftrightarrow3\sqrt{x+5}=6\)
\(\Leftrightarrow\sqrt{x+5}=2\)
<=> x + 5 = 4
<=> x = - 1 (nhận)
1) \(\sqrt{\text{x^2− 20x + 100 }}=10\)
<=> \(\sqrt{\left(x-10\right)^2}=10\)
<=> \(\left|x-10\right|=10\)
=> \(\left[{}\begin{matrix}x-10=10\\x-10=-10\end{matrix}\right.\)=> \(\left[{}\begin{matrix}x=10+10\\x=\left(-10\right)+10\end{matrix}\right.\)=>\(\left[{}\begin{matrix}x=20\\x=0\end{matrix}\right.\)
Vậy S = \(\left\{20;0\right\}\)
2) \(\sqrt{x +2\sqrt{x}+1}=6\)
<=> \(\sqrt{\left(\sqrt{x^2}+2.\sqrt{x}.1+1^2\right)}=6\)
<=> \(\sqrt{\left(\sqrt{x}+1\right)^2}=6\)
<=> \(\left|\sqrt{x}+1\right|=6\)
=> \(\left[{}\begin{matrix}\sqrt{x}+1=6\\\sqrt{x}+1=-6\end{matrix}\right.\)=>\(\left[{}\begin{matrix}\sqrt{x}=6-1=5\\\sqrt{x}=\left(-6\right)-1=-7\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=25\\x=-49\left(loai\right)\end{matrix}\right.\)
Vậy S = \(\left\{25\right\}\)
3) \(\sqrt{x^2-6x+9}=\sqrt{4+2\sqrt{3}}\)
<=> \(\sqrt{\left(x-3\right)^2}=\sqrt{\sqrt{3^2}+2.\sqrt{3}.1+1^2}\)
<=> \(\left|x-3\right|=\sqrt{\left(\sqrt{3}+1\right)^2}\)
<=> \(\left|x-3\right|=\sqrt{3}+1\)
=> \(\left[{}\begin{matrix}x-3=\sqrt{3}+1\\x-3=-\left(\sqrt{3}+1\right)\end{matrix}\right.\)=>\(\left[{}\begin{matrix}x=\sqrt{3}+4\\x=-\sqrt{3}+2\end{matrix}\right.\)
Vậy S = \(\left\{\sqrt{3}+4;-\sqrt{3}+2\right\}\)
4) \(\sqrt{3x+2\sqrt{3x}+1}=5\)
<=> \(\sqrt{\sqrt{3x}^2+2.\sqrt{3x}.1+1^2}=5\)
<=> \(\sqrt{\left(\sqrt{3x}+1\right)^2}=5\)
<=> \(\left|\sqrt{3x}+1\right|=5\)
=> \(\left[{}\begin{matrix}\sqrt{3x}+1=5\\\sqrt{3x}+1=-5\end{matrix}\right.\)=> \(\left[{}\begin{matrix}\sqrt{3x}=5-1=4\\\sqrt{3x}=\left(-5\right)-1=-6\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}3x=16\\3x=-6\left(loai\right)\end{matrix}\right.\)=> x = \(\dfrac{16}{3}\) Vậy S = \(\left\{\dfrac{16}{3}\right\}\)
5) \(\sqrt{x^2+2x\sqrt{3}+3}=\sqrt{4-2\sqrt{3}}\)
<=> \(\sqrt{\left(x-\sqrt{3}\right)^2}=\sqrt{\left(\sqrt{3}-1\right)^2}\)
<=> \(\left|x-\sqrt{3}\right|=\sqrt{3}-1\)
<=> \(\left[{}\begin{matrix}x-\sqrt{3}=\sqrt{3}-1\\x-\sqrt{3}=-\left(\sqrt{3}-1\right)\end{matrix}\right.\)=> \(\left[{}\begin{matrix}x=-1\\x=-2\sqrt{3}+1\end{matrix}\right.\)
Vậy S = \(\left\{-1;-2\sqrt{3}+1\right\}\)
6) \(\sqrt{6x+4\sqrt{6x}+4}=7\)
<=> \(\sqrt{\sqrt{6x}^2+2.\sqrt{6x}.2+2^2}=7\)
<=> \(\sqrt{\left(\sqrt{6}+2\right)^2}=7\)
<=> \(\left|\sqrt{6x}+2\right|=7\)
=> \(\left[{}\begin{matrix}\sqrt{6x}+2=7\\\sqrt{6x}+2=-7\end{matrix}\right.\)=>\(\left[{}\begin{matrix}\sqrt{6x}=7-2=5\\\sqrt{6x}=\left(-7\right)-2=-9\left(loai\right)\end{matrix}\right.\)
=> \(\sqrt{6x}=5=>6x=25=>x=\dfrac{25}{6}\)
\(x^3=76+3\sqrt[3]{\left(38-17\sqrt{5}\right)\left(38+17\sqrt{5}\right)}\left(\sqrt[3]{38-17\sqrt{5}}+\sqrt[3]{38+17\sqrt{5}}\right)\)
\(\Leftrightarrow x^3=76-3x\)
\(\Leftrightarrow x^3+3x-76=0\)
\(\Leftrightarrow\left(x-4\right)\left(x^2+4x+19\right)=0\)
\(\Leftrightarrow x=4\)
\(\Rightarrow x^3-3x^2-2x-8=0\)
Ta có : \(x^3=\left(9+4\sqrt{5}\right)+\left(9-4\sqrt{5}\right)+3\sqrt[3]{\left(9+4\sqrt{5}\right)\left(9-4\sqrt{5}\right)}\)
\(\left(\sqrt[3]{9-4\sqrt{5}}+\sqrt[3]{9-4\sqrt{5}}\right)\)
\(\Leftrightarrow x^3=18+30\)
\(\Leftrightarrow x^3-3x-18x=0\)