Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
C1: Ta có: 49 chia 3 dư 1
=> 49^n chia 3 dư 1
13 chia 3 dư 1
=> 13^n chia 3 dư 1
269 chia 3 dư 2
=> \(49^n+296.13^n\)chia 3 dư 1+2.1=3
=> \(49^n+296.13^n\)chia hết cho 3
C2: Hoặc bạn có thể làm theo cách đồng dư
\(49\equiv1\left(mod3\right)\)
=> \(49^n\equiv1^n\equiv1\left(mod3\right)\)
\(13\equiv1\left(mod3\right)\)
=> \(13^n\equiv1^n\equiv1\left(mod3\right)\)
\(296\equiv2\left(mod3\right)\)
=> \(49^n+296.13^n\equiv1+2.1\equiv3\equiv0\left(mod3\right)\)
=> \(49^n+296.13^n\)chia hết cho 3
Thêm đk n thuộc N*. Quy nạp thử xem nào:) (em ko chắc đâu nhá)
Với n = 1 thì nó đúng
Giả sử nó đúng với n = k tức là \(49^k+296.13^k⋮3\)
Ta chứng minh nó đúng với n = k + 1. Cần chứng minh \(49^k.49+296.13^k.13⋮3\)
\(\Leftrightarrow49\left(49^k+296.13^k\right)-296.13^k.36⋮3\)
Điều này hiển nhiên đúng do giả thiết quy nạp và \(296.13^k.36\) chia hết cho 3
Câu 1: giả sử √7 là số hữu tỉ
=> √7 = a/b (a,b ∈ Z ; b ≠ 0)
không mất tính tổng quát giả sử (a;b) = 1
=> 7 = a²/b²
<=> a² = b7²
=> a² ⋮ 7
7 nguyên tố
=> a ⋮ 7
=> a² ⋮ 49
=> 7b² ⋮ 49
=> b² ⋮ 7
=> b ⋮ 7
=> (a;b) ≠ 1 (trái với giả sử)
=> giả sử sai
=> √7 là số vô tỉ
C1
Giả sử căn 7 là số hữu tỉ Vậy căn 7 bằng a/b. Suy ra 7 bằng a bình / b bình. Suy ra a bình bằng 7b bình Suy ra a chia hết cho 7 Gọi a bằng 7k suy ra a bình bằng 7b bình Suy ra (2k) bình bằng 2b bình suy ra 4k bình bằng 2b bình suy ra 2k bình bằng b bình Suy ra ƯCLN(a,b)=2 Trái với đề bài =>căn 7 là số vô tỉ
x5-x=x.(x4-1)
với x=5 thì x5-x chia hết cho 5
với x khác 5 thì :
x4 có tận cùng là 1 hoặc 6
=>x4-1 có tận cùng là 5 hoặc 0=>x4-1 chia hết cho 5
=>x5-x chia hết cho 5
Vậy x5_ x chia hết cho 5.