K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 1 2018

\(x^4+4x+5\)

\(=\left(x^4+4x+4\right)+1\)

\(=\left(x+2\right)^2+1\)

\(\left(x+2\right)^2\ge0\)với mọi x

\(\Rightarrow\left(x+2\right)^2+1>0\)với mọi x

vậy.....(đpcm)

4 tháng 1 2018

Bạn xem có hằng đẳng thức nào nv không??

24 tháng 5 2018

Xét 2 vế : x^4 - 4x và 5

+) 5 >0 (1)

+) x^4 - 4x => +) x dương thì x^4 > 4x => x^4 - 4x dương => tổng 2 vế dương > 0 (2)

                        +) x âm thì x^4 dương; -4x dương => x^4 - 4x dương => tổng 2 vế dương >0 (3)

Từ (1)(2)(3) => đpcm

Ai ngang qua xin để lại 1 l-i-k-e

24 tháng 5 2018

Ta có : \(x^2-4x+5\)

\(=\left(x^2-4x+4\right)+1\)

\(=\left(x-2\right)^2+1\)

Mà  \(\left(x-2\right)^2\ge0\)

\(\Rightarrow\left(x-2\right)^2+1\ge1>0\)

Vậy cái đề

12 tháng 7 2019

a, Có: \(x^2\ge0\forall x\)

\(\Rightarrow x^2+4x\ge0\forall x\)

\(\Rightarrow x^2+4x+10>0\forall x\left(đpcm\right)\)

30 tháng 7 2018

a) điều kiện \(x\ne1;x\ne\dfrac{1}{3}\)

ta có : \(P=\dfrac{x-1}{3x^2-4x+1}=\dfrac{x-1}{\left(x-1\right)\left(3x-1\right)}=\dfrac{1}{3x-1}\)

b) ta có : nếu \(x>1\) \(\Rightarrow3x-1>0\) \(\Leftrightarrow\dfrac{1}{3x-1}>0\)

và khi đó \(-x< -1\Rightarrow3x-1< 0\Leftrightarrow\dfrac{1}{3x-1}< 0\)

\(\Rightarrow P\left(x\right).P\left(-x\right)< 0\) (đpcm)

13 tháng 6 2018

I not sure for this answer if have any trouble you can ask me

a)\(\sqrt{x^2-4x+5}\ge\forall x\)

\(\Leftrightarrow\sqrt{x^2-4x+4+1}\)

\(\Leftrightarrow\sqrt{\left(x+1\right)}^2+1\)

\(\sqrt{\left(x+1\right)^2}\ge0\forall x\)

nên \(\sqrt{\left(x+1\right)^2}+1>0\forall x\)

13 tháng 6 2018

sai ngữ pháp Tiếng Anh :))

23 tháng 5 2018

Với mọi n nguyên dương ta có:

\(\left(\sqrt{n+1}+\sqrt{n}\right)\left(\sqrt{n+1}-\sqrt{n}\right)=1\Rightarrow\frac{1}{\sqrt{n+1}+\sqrt{n}}=\sqrt{n+1}-\sqrt{n}\)

Với k nguyên dương thì 

\(\frac{1}{\sqrt{k-1}+\sqrt{k}}>\frac{1}{\sqrt{k+1}+\sqrt{k}}\Rightarrow\frac{2}{\sqrt{k-1}+\sqrt{k}}>\frac{1}{\sqrt{k-1}+\sqrt{k}}+\frac{1}{\sqrt{k+1}+\sqrt{k}}=\sqrt{k}-\sqrt{k-1}+\sqrt{k+1}-\sqrt{k}\)

\(=\sqrt{k+1}-\sqrt{k-1}\)(*)

Đặt A = vế trái. Áp dụng (*) ta có:

\(\frac{2}{\sqrt{1}+\sqrt{2}}>\sqrt{3}-\sqrt{1}\)

\(\frac{2}{\sqrt{3}+\sqrt{4}}>\sqrt{5}-\sqrt{3}\)

...

\(\frac{2}{\sqrt{79}+\sqrt{80}}>\sqrt{81}-\sqrt{79}\)

Cộng tất cả lại

\(2A=\frac{2}{\sqrt{1}+\sqrt{2}}+\frac{2}{\sqrt{3}+\sqrt{4}}+....+\frac{2}{\sqrt{79}+\sqrt{80}}>\sqrt{81}-1=8\Rightarrow A>4\left(đpcm\right)\)

3. 

Theo bất đẳng thức cô si ta có: 

\(\sqrt{b-1}=\sqrt{1.\left(b-1\right)}\le\frac{1+b-1}{2}=\frac{b}{2}\Rightarrow a.\sqrt{b-1}\le\frac{a.b}{2}\)

Tương tự \(\Rightarrow b.\sqrt{a-1}\le\frac{a.b}{2}\Rightarrow a.\sqrt{b-1}+b.\sqrt{a-1}\le a.b\)

Dấu "=" xảy ra khi và chỉ khi \(a=b=2\)

13 tháng 8 2017

3) Đặt b+c=x;c+a=y;a+b=z.

=>a=(y+z-x)/2 ; b=(x+z-y)/2 ; c=(x+y-z)/2

BĐT cần CM <=> \(\frac{y+z-x}{2x}+\frac{x+z-y}{2y}+\frac{x+y-z}{2z}\ge\frac{3}{2}\)

VT=\(\frac{1}{2}\left(\frac{y}{x}+\frac{z}{x}-1+\frac{x}{y}+\frac{z}{y}-1+\frac{x}{z}+\frac{y}{z}-1\right)\)

\(=\frac{1}{2}\left[\left(\frac{x}{y}+\frac{y}{x}\right)+\left(\frac{y}{z}+\frac{z}{y}\right)+\left(\frac{x}{z}+\frac{z}{x}\right)-3\right]\)

\(\ge\frac{1}{2}\left(2+2+2-3\right)=\frac{3}{2}\)(Cauchy)

Dấu''='' tự giải ra nhá

13 tháng 8 2017

Bài 4 

dễ chứng minh \(\left(a+b\right)^2\ge4ab;\left(b+c\right)^2\ge4bc;\left(a+c\right)^2\ge4ac\)

\(\Rightarrow\left(a+b\right)^2\left(b+c\right)^2\left(a+c\right)^2\ge64a^2b^2c^2\)

rồi khai căn ra \(\Rightarrow\)dpcm. 

đấu " = " xảy ra \(\Leftrightarrow\)\(a=b=c\)

8 tháng 5 2016

Có x8x7+x5x4+x3x+1=x10+x5+1x2+x+1x8−x7+x5−x4+x3−x+1=x10+x5+1x2+x+1
x10+x5+1=(x5+12)2+34x10+x5+1=(x5+12)2+34
x10+x5+1>0⇒x10+x5+1>0
x2+x+1=(x+12)2+34>0x2+x+1=(x+12)2+34>0
x8x7+x5x4+x3x+1>0

⇒x8−x7+x5−x4+x3−x+1>0

T

ích mk nha bạn

8 tháng 5 2016

Viết lại câu trả lời được "Copy" trên mạng bởi "Thần hộ vệ ...."

\(x^8-x^7+x^5-x^4+x^3-x+1=\frac{x^{10}+x^5+1}{x^2+x+1}=\frac{\left(x^5+\frac{1}{2}\right)^2+\frac{3}{4}}{\left(x+\frac{1}{2}\right)^2+\frac{3}{4}}>0\)

4 tháng 3 2018

CMR: \(\frac{1}{x}+\frac{1}{y}\le2\)  biết \(^{x^3+y^3+3\left(x^2+y^2\right)+4\left(x+y\right)+4=0}\) và xy>0

8 tháng 3 2018

tôi quên mât CMR: 1/x+1/y<=-2