\(x^3+y^3+z^3\)

chia hết cho 6 khi và chỉ khi x+y+z chia hết cho...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 11 2016

\(ĐK:x;y;z\in Z\)

Xét hiệu: (x3 + y3 + z3) - (x + y + z) 

= (x3 - x) + (y3 - y) + (z3 - z)

= x.(x2 - 1) + y.(y2 - 1) + z.(z2 - 1)

= x.(x - 1).(x + 1) + y.(y - 1).(y + 1) + z.(z - 1).(z + 1)

Dễ thấy x.(x - 1).(x + 1); y.(y - 1).(y + 1); z.(z - 1).(z + 1) đều là tích 3 số nguyên liên tiếp nên 3 tích này đều chia hết cho 2 và 3

Mà (2;3)=1 nên mỗi tích này chia hết cho 6

=> (x3 + y3 + z3) - (x + y + z) chia hết cho 6

Như vậy nếu x3 + y3 + z3 chia hết cho 6 thì x + y + z chia hết cho 6 và ngược lại (đpcm)

15 tháng 11 2016

bài này  mà lớp 7 thì khó đây , nhưng lớp 8,9 lại ưa dễ

2 tháng 1 2018

Tui biet nhung ko tra loi dc

13 tháng 6 2018

b) Ta có:

\(\dfrac{19}{x+y}=\dfrac{19}{y+z}=\dfrac{19}{z+x}=\dfrac{133}{10}\)

\(\Rightarrow\dfrac{133}{7\left(x+y\right)}=\dfrac{133}{7\left(y+z\right)}=\dfrac{133}{7\left(z+x\right)}=\dfrac{133}{10}\)

\(\Rightarrow7\left(x+y\right)=7\left(y+z\right)=7\left(z+x\right)=10\)

\(\Rightarrow7\left(x+y\right)+7\left(y+z\right)+7\left(z+x\right)=10\)

\(\Rightarrow7\left[2\left(x+y+z\right)\right]=10\)

\(\Rightarrow14\left(x+y+z\right)=10\)

\(\Leftrightarrow x+y+z=\dfrac{5}{7}\)

16 tháng 6 2018

bn có lm đc câu a k bn

10 tháng 12 2016

Các bạn ơi, đính chính lại nhé! Chỉ cần giải bài 1, 2a,2d và bài 3 là được rồi nhé, mình cảm ơn

 

10 tháng 12 2016

1. Xét 32^9 và 18^13

ta có 32^9=(2^5)^9=2^45

18^13>16^13=(2^4)^13=2^52

vì 18^13>2^52>2^45 nên 18^13>32^9

2.

a, ta có A=10\(^{2008}\)+125=100...0+125(CÓ 2008 SỐ 0)=100..0125(CÓ 2005 CSO 0)

Vì 45=5.9 nên cần chứng minh A \(⋮5,⋮9\)

mà A có tcung là 5 nên A \(⋮\)5

A có tổng các cso là 9 nên A\(⋮\)9

vậy A \(⋮\)45

d, bn xem có sai đề ko nhé

3, A=(y+x+1)/x=(x+z+2)/y=(x+y-3)/z=1/(x+y+z)=(y+x+1+x+z+2+x+y-3)/(x+y+z)=2(x+y+z)/(x+y+z)=1/(x+y+z)( AD tchat của dãy tỉ số = nhau)

x+y+z=1/2 hoặc -1/2

còn lai bn tự tính nhé

15 tháng 7 2015

+TH1: x⋮3 và y⋮3 thì x2⋮3 và y2⋮3 => x2+y2⋮3.

+TH2: x⋮3 và y không chia hết cho 3 (hoặc x không chia hết cho 3 và y⋮3)
=> x2⋮3 và y2 không chia hết cho 3 => x2+y2 không chia hết cho 3 -> loại

+TH3: x và y cùng chia 3 dư 1; giả sử x = 3a+1; y = 3b+1

\(x^2+y^2=\left(3a+1\right)^2+\left(3b+1\right)^2=9a^2+6a+1+9b^2+6b+1=3\left(3a^2+2a+3b^2+2b\right)+2\)

=> x2+y2 chia 3 dư 2 -> loại.

+TH4: x và y cùng chia 3 dư 2; giả sử x = 3a-1; y = 3b-1

\(x^2+y^2=\left(3a-1\right)^2+\left(3b-1\right)^2=9a^2-6a+1+9b^2-6b+1=3\left(3a^2-2a+3b^2-2b\right)+2\)=> x2+y2 chia 3 dư 2 -> loại

+TH5: x chia 3 dư 1 và y chia 3 dư 2 (hoặc x chia 3 dư 2 và y chia 3 dư 1); giả sử x = 3a+1; y = 3b-1

\(x^2+y^2=\left(3a+1\right)^2+\left(3b-1\right)^2=9a^2+6a+1+9b^2-6b+1=3\left(3a^2+2a+3b^2-2b\right)+2\)=> x2+y2 chia 3 dư 2 -> loại

Vậy: x2 + y2 chia hết cho 3 khi và chỉ khi x và y chia hết cho 3.

12 tháng 12 2018

sao lại chai hết cho 6 ????????

hả????????????????

hả?????????????????????????

5 tháng 2 2018

chưa rảnh

5 tháng 2 2018

vậy khi nào rảnh thì bạn giúp mk nha

Bài 1: Tìm x, y, z biết: a. \(8x=3y\); \(5y=6z\) và \(2x+y-z=-34\)b. \(6^{x+1}-200\cdot6^{x-1}=360\) \(\left(x\in N,x\ge2\right)\)c. \(3^x+4^x=5^x\left(x\in N\right)\)d. \(\frac{x-5}{7}=\frac{2y+3}{5}=z+19\) và \(x+y=z\)e. \(\frac{x^3+y^3}{6}=\frac{x^3-2y^3}{4}\) và \(x^6\cdot y^6=64\)g. \(\left(x^3-5\right)\left(x^3-10\right)\left(x^3-30\right)< 0\left(x\in Z\right)\)Bài 2: a. Chứng minh...
Đọc tiếp

Bài 1: Tìm x, y, z biết: 

a. \(8x=3y\)\(5y=6z\) và \(2x+y-z=-34\)

b. \(6^{x+1}-200\cdot6^{x-1}=360\) \(\left(x\in N,x\ge2\right)\)

c. \(3^x+4^x=5^x\left(x\in N\right)\)

d. \(\frac{x-5}{7}=\frac{2y+3}{5}=z+19\) và \(x+y=z\)

e. \(\frac{x^3+y^3}{6}=\frac{x^3-2y^3}{4}\) và \(x^6\cdot y^6=64\)

g. \(\left(x^3-5\right)\left(x^3-10\right)\left(x^3-30\right)< 0\left(x\in Z\right)\)

Bài 2: 

a. Chứng minh rằng: \(1-\frac{1}{2^2}-\frac{1}{3^2}-\frac{1}{4^2}-...-\frac{1}{2011^2}>\frac{1}{2011}\)

b. Cho \(\left(5a_1+7b_1\right)^{2010}+\left(5a_2+7b_2\right)^{2012}+\left(5a_3+7b_3\right)^{2014}\le0\) và \(b_1,b_2,b_3\ne0,b_1+b_2+b_3\ne0\) . Chứng minh rằng: \(\frac{a_1+a_2+a_3}{b_1+b_2+b_3}=-1\frac{2}{5}\)

Bài 3: 

a. Cho \(\frac{x}{y}=\frac{z}{t}\) . Chứng minh rằng \(\frac{x^2-y^2}{z^2-t^2}=\left(\frac{y-x}{t-z}\right)^2=\frac{xy}{zt}\)

b. Độ dài 3 đường cao của 1 tam giác tỉ lệ với 3; 5; 6. Tính độ dài 3 cạnh tương ứng của tam giác đó, biết rằng chu vi của tam giác là  42cm 

c. Chứng minh rằng \(2^{x+4}-3^x-3^{x+2}-2^x\) chia hết cho 30 với x la số tựu nhiên lớn hơn hoặc bằng 1

 

0