Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=x^4-4x^3-4x^2+16x\)
\(=x^3\left(x-4\right)-4x\left(x-4\right)\)
\(=\left(x^3-4x\right)\left(x-4\right)\)
\(=x\left(x^2-4\right)\left(x-4\right)\)
\(=\left(x-4\right)\left(x-2\right)x\left(x+2\right)\)
x chẵn nên x - 4; x - 2; x + 2 chẵn
Vậy \(\left(x-4\right)\left(x-2\right)x\left(x+2\right)\)là tích của 4 số chẵn liên tiếp
hay \(x^4-4x^3-4x^2+16x\)là tích của 4 số chẵn liên tiếp (đpcm)
![](https://rs.olm.vn/images/avt/0.png?1311)
Đặt A = n4 - 4n3 - 4n2 + 16n
= n3(n - 4) - 4n(n - 4)
= (n - 4)(n3 - 4n)
= (n - 4)n(n2 - 4)
= (n - 4)n(n - 2)(n + 2)
= (n - 4)(n - 2)n(n + 2)
Vì n chẵn => n = 2k (k \(\inℕ^∗\))
Khi đó A = (2k - 4)(2k - 2)2k(2k + 2)
= 2(k - 2).2(k - 1).2k.2(k + 1)
= 16(k - 2)(k - 1)k(k + 1)
Vì (k - 2)(k - 1)k(k + 1) là tích 4 số nguyên liên tiếp
=> Tồn tại 2 số chia hết cho 2 ; 4
Mà n > 4 => k > 2
=> (k - 2)(k - 1).k(k + 1) \(⋮\)8
lại có (k - 2)(k - 1)k(k + 1) \(⋮\)3 (tích 4 số liên tiếp => tồn tại 1 số chia hết cho 3)
Mà ƯCLN(8;3) = 1
=> (k - 2)(k - 1)k(k + 1) \(⋮\)8.3 = 24
=> A \(⋮\)384
![](https://rs.olm.vn/images/avt/0.png?1311)
Lời giải:
Ta có:
\(A=x^4-4x^3-4x^2+16x=x(x^3-4x^2-4x+16)\)
\(=x[x^2(x-4)-4(x-4)]=x(x-4)(x^2-4)=x(x-4)(x-2)(x+2)\)
\(=(x-4)(x-2)x(x+2)\)
Vì $x$ chẵn nên $x-4,x-2,x+2$ cũng là số chẵn.
Vậy $x-4,x-2,x,x+2$ là 4 số chẵn liên tiếp
Do đó $A$ là tích 4 số chẵn liên tiếp.
chứng minh rằng giá trị của biếu thức sau ko phụ thuộc vào \(x\)
(\(4x-1\))3 -(\(4x-3\))(\(16x^2+3\))
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\left(4x-1\right)^3-\left(4x-3\right)\left(16x^2+3\right)\)
\(=\left(4x\right)^3-3\cdot\left(4x\right)^2\cdot1+3\cdot4x\cdot1^2-1^3-64x^3-12x+48x^2+9\)
\(=64x^3-48x^2+12x-1-64x^3-12x+48x^2+9\)
\(=8\)
=> giá trị của bt ko phụ thuộc vào z
![](https://rs.olm.vn/images/avt/0.png?1311)
\(C=n^4-4n^3-4n^2+16n=n\left(n-4\right)\left(n-2\right)\left(n+2\right)\)
\(n=2k\Leftrightarrow\)\(C=n\left(n-4\right)\left(n-2\right)\left(n+2\right)=2^4k\left(k-2\right)\left(k-1\right)\left(k+1\right)\)
Chứng minh \(k\left(k-2\right)\left(k-1\right)\left(k+1\right)\) chia hết cho 24
=> C chia hết cho 24.24 = 384
![](https://rs.olm.vn/images/avt/0.png?1311)
Biểu thức không phụ thuộc vào x là nó chỉ có số, không có phần biến
(4x - 1)3 - (4x - 3)(16x2 + 3)
= 64x3 - 48x2 + 12x - 1 - 64x3 - 12x + 48x2 + 9
= -1 + 9
= 8
=> Biểu thức trên không phụ thuộc vào x.
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 13:
(12x-5)(4x-1)+(3x-7)(1-16x)=81
<=>48x2-12x-20x+5+3x-48x2-7+112x=81
<=>-32x+115x=81+2
<=>83x=83
<=>x=1
Bài 14:
Gọi 3 số chẵn đó lần lượt là: a;(a+2);(a+4)
Theo đề bài ra ta có:
(a+2)(a+4)=a(a+2)+192
=>a2+6a+8=a2+2a+192
=>4a=184
=>a=46
Suy ra 2 số còn lại là 46+2=48 và 46+4=50
Vậy 3 số chẵn liên tiếp thỏa mãn là 46;48;50
Bài 8:
b)(x2-xy+y2)(x+y)
=x3-x2y+xy2+y3-xy2+x2y
=x3+y3
Đây còn là 1 trong các HĐT đáng nhớ
![](https://rs.olm.vn/images/avt/0.png?1311)
Câu a mình chắc chắn là đúng vì mình làm rồi.
Chúc bạn học tốt.
b) \(-4x^2-4x-2\) <0 với mọi x
\(=-\left(4x^2+4x+2\right)\)
\(=-\left[\left(2x^2\right)+2.2x.1+1^2+2\right]\)
\(=-\left[\left(2x+1\right)^2+2\right]\)
\(=-\left(2x+1\right)^2-2\)
Nx : \(-\left(2x+1\right)^2\le0\) với mọi x
\(\Rightarrow-\left(2x+1\right)^2-2< 0\) với mọi x
\(\Rightarrow-4x^2-4x-2< 0\) với mọi x
Bạn tham khảo tại đây nhé: Câu hỏi của Nghĩa Nguyễn - Toán lớp 9 - Học toán với OnlineMath.
Chúc bạn học tốt!