Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=n\left(2n+7\right)\left(7n+7\right)\)
\(=7n\left(n+1\right)\left(2n+4+3\right)\)
\(=14n\left(n+1\right)2\left(n+2\right)+3.7\left(n+1\right)n\)
Ta có :
\(n\left(n+1\right)\left(n+2\right)\) là tích của 3 số tự nhiên liên tiếp nên chia hết cho 6
\(\Leftrightarrow A⋮6\rightarrowđpcm\)
A = n(2n+7) ( 7n+7)
= 7n ( n+1) (2n+4+3)
= 14n (n+1) 2(n+2) + 3.7(n+1)n
Ta có : n(n+1) (n+2) là tích của 3 số tự nhiên liên tiếp
=> n (n+1) (n+2) chia hết cho 6
=> A chia hết cho 6 (đpcm)
\(\Rightarrow S_1+S_2+S_3=\left(\frac{b}{a}x+\frac{c}{a}z\right)+\left(\frac{a}{b}x+\frac{c}{b}y\right)+\left(\frac{a}{c}z+\frac{b}{c}y\right)\)
\(=\left(\frac{b}{a}x+\frac{a}{b}x\right)+\left(\frac{c}{b}y+\frac{b}{c}y\right)+\left(\frac{c}{a}z+\frac{a}{c}z\right)\)
\(=x\left(\frac{b}{a}+\frac{a}{b}\right)+y\left(\frac{c}{b}+\frac{b}{c}\right)+z\left(\frac{c}{a}+\frac{a}{c}\right)\)
Ta có: Tổng hai số nghịch đảo luôn lớn hơn hoặc bằng 2 nên:
\(\frac{b}{a}+\frac{a}{b}\ge2\) ; \(\frac{c}{b}+\frac{b}{c}\ge2\) ; \(\frac{c}{a}+\frac{a}{c}\ge2\)
\(\Rightarrow S_1+S_2+S_3\ge x.2+y.2+z.2=2.\left(x+y+z\right)=2.5=10\)
Vậy suy ra điều phải chứng minh.
2n+1 và 2n nguyên tố cùng nhau
xét 2n+1 và n+1
n+1=2n+2. mà 2n+2 và 2n+1 nguyên tố cùng nhau
hay 2(n+1) và 2n+1 nguyên tố cùng nhau. mà 2n+1 là số lẻ, 2 là số chẵn nên 2 và 2n+1 nguyên tố cùng nhau thì n+1 và 2n+1 cũng nguyên tố cùng nhau
=> 2n(n+1) và 2n+1 nguyên tố cùng nhau thì phân số trên đã tối giản
\(=3^{n+2}+3^n-2^{n+2}-2^n=3^n\left(3^2+1\right)-2^n\left(2^2+1\right)\)
\(=10.3^n-2.2^{n-1}.5=10.3^n-10.2^{n-1}=10\left(3^n-2^{n-1}\right)\)
Chia hết cho 10
(l ike nha)
nếu n=2k =>n(2n+7)(7n+7)chia hết cho 2(1)
nếu n=2k+1 =>7n+7=7(2k+1)+7=2.7k+7+7=2(7k+7) chia hết cho 2
=>n(2n+7)(7n+7) chia hết cho 2(2)
từ (1) và (2) =>n(2n+7)(7n+7) chia hết cho 2
xét n=3k =>n(2n+7)(7n+7) chia hết cho 3 (3)
xét n=3k+1 =>2n+7=2(3k+1)+7=3.2k+2+7=3(2k+3) chia hết cho 3
=>n(2n+7)(7n+7) chia hết cho 3 (4)
xét n=3k+2 =>7n+7=7(n+1)=7(3k+2+1)=3.7(k+1) chia hết cho 3 (5)
từ (3);(4);(5) =>n(2n+7)(7n+7) chia hết cho 3
=>n(2n+7)(7n+7) chia hết cho 2 và 3
vì (2;3)=1 =>n(2n+7)(7n+7) chia hết cho 6
=>đpcm