Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 2: Nhân cả hai vế của phương trình với 4 , ta có:
\(4x^2+4y^2-4x-4x=32\Leftrightarrow\left(4x-4x+1\right)+\left(4y^2-4y+1\right)=34\)
\(\Leftrightarrow\left(2x-1\right)^2+\left(2y-1\right)^2=34\)
Ta thấy 34 = 52 + 32 nên ta có bảng:
2x-1 | 5 | -5 | 3 | -3 |
x | 3 | -2 | 2 | -1 |
2y-1 | 5 | -5 | 3 | -3 |
y | 3 | -3 | 2 | -1 |
Vậy các cặp nghiệm nguyên thỏa mãn là (5;3) , (5;-3) , (-5;3) , (-5;-3) , (3; 5), (3;-5) , (-3; 5), (-3;-5)
Câu 1 bạn dùng chia hết cho 13
Câu 2 bạn cộng cả 2 vế với z^4 rồi dùng chia 8
Câu 3 bạn đặt a^4n là x thì x sẽ chia 5 dư 1 và chia hết cho 4 hoăc chia 4 dư 1
Khi đó ta có x^2+3x-4=(x-1)(x+4)
đến đây thì dễ rồi
Câu 4 bạn xét p=3 p chia 3 dư 1 p chia 3 dư 2 là ra
Câu 6 bạn phân tích biểu thức của đề thành nhân tử có nhân tử x-2
Câu 5 mình nghĩ là kẹp giữa nhưng chưa ra
Câu hỏi của Trương Tiền Phương - Toán lớp 9 - Học toán với OnlineMath
Bài này phải là n nguyên dương nhé
Ta có bài toán tổng quát : Cho pt \(ax^2+bx+c=0\left(a\ne0\right)\)có 2 nghiệm x1 ; x2
Đặt \(S_n=x_1^n+x_2^n\)thì pt \(aS_{n+2}+bS_{n+1}+cS_n=0\)cũng có nghiệm với n nguyên dương
Thật vậy Có : \(aS_{n+2}+bS_{n+1}+cS_n=a\left(x_1^{n+2}+x_2^{n+2}\right)+b\left(x_1^{n+1}+x_2^{n+1}\right)+c\left(x_1^n+x_2^n\right)\)
\(=x_1^n\left(ax_1^2+bx_1+c\right)+x_2^n\left(ax_2^2+bx_2+c\right)\)
\(=0\)
Vậy bài toán đc c/m
Áp dụng bài toán trên :pt \(x^2-3x+1=0\)Có nghiệm nên
pt \(s_{n+2}-3S_{n+1}+S_n=0\)cũng có nghiệm
\(\Rightarrow S_{n+2}=3S_{n+1}-S_n\)
Ta sẽ c/m Sn là số nguyên bằng phương pháp quy nạp
Với \(n=0\Rightarrow S_0=2\inℤ\)
Với \(n=1\Rightarrow S_1=3\inℤ\)
Với \(n=2\Rightarrow S_2=7\inℤ\)
Giả sử bài toán đúng với .n = k và n = k + 1 (k là stn)
Ta phải c/m phải toán đúng với n = k + 2
Có \(S_{k+2}=6S_{k+1}-S_k\inℤ\left(Do\text{ }S_{k+1};S_k\inℤ\right)\)
Vậy \(S_n\inℤ\forall n\inℕ^∗\)
j vây lm g
với n=1 thì x+y=z thì rất có nhiều x,y,z để tìm như 1+2=3,2+3=4,...
với n=2 thì các dạng 9k2+16k2=125k2 (k là số tự nhiên ) luôn xảy ra, còn nhiều dạng khác các bạn có thể tìm thêm
với n>2
nếu x2+y2=z2 suy ra (x/z)2+(y/z)2=1 mà x,y,z nguyên dương nên x/z<1,y/z<1 nên (x/z)2>(x/z)n,(y/z)2>(y/z)n suy ra 1>(x/z)n+(y/z)n
suy ra xn+yn<zn (1)
nếu x2+y2<z2 suy ra
(x/z)2+(y/z)2<1 mà x,y,z nguyên dương nên x/z<1,y/z<1 nên (x/z)2>(x/z)n,(y/z)2>(y/z)n suy ra (x/z)2+(y/z)2>(x/z)n+(y/z)n
mà (x/z)2+(y/z)2<1suy ra 1>(x/z)n+(y/z)n suy ra xn+yn<zn (2)
còn trường hợp x2+y2>z2 mình chưa nghĩ ra nha
bạn thông cảm nhé
@minhnguvn