K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 11 2017

- Khi n = 1, VT = 1;

Giải bài tập Toán 11 | Giải Toán lớp 11

⇒ VT = VP , do đó đẳng thức đúng với n = 1.

- Giả sử đẳng thức đúng với n = k ≥ 1, nghĩa là:

Giải bài tập Toán 11 | Giải Toán lớp 11

Ta phải chứng minh rằng đẳng thức cũng đúng với n = k + 1, tức là:

Giải bài tập Toán 11 | Giải Toán lớp 11

Thật vậy, từ giả thiết quy nạp ta có:

Giải bài tập Toán 11 | Giải Toán lớp 11

Vậy đẳng thức đúng với mọi n ∈ N*

6 tháng 2 2017

Đề bài không rõ ràng. n ở đây là tự nhiên, nguyên hay là chơi luôn cả R

9 tháng 4 2017

a) Với n = 1, vế trái chỉ có một số hạng là 2, vế phải bằng = 2

Vậy hệ thức đúng với n = 1.

Đặt vế trái bằng Sn.

Giả sử đẳng thức a) đúng với n = k ≥ 1, tức là

Sk= 2 + 5 + 8 + …+ 3k – 1 =

Ta phải chứng minh rằng cũng đúng với n = k + 1, nghĩa là phải chứng minh

Sk+1 = 2 + 5 + 8 + ….+ 3k -1 + (3(k + 1) – 1) =

Thật vậy, từ giả thiết quy nạp, ta có: Sk+1 = Sk + 3k + 2 = + 3k + 2

= (điều phải chứng minh)

Vậy theo nguyên lí quy nạp toán học, hệ thức đúng với mọi n ε N*

b) Với n = 1, vế trái bằng , vế phải bằng , do đó hệ thức đúng.

Đặt vế trái bằng Sn.

Giả sử hệ thức đúng với n = k ≥ 1, tức là

Ta phải chứng minh .

Thật vậy, từ giả thiết quy nạp, ta có:

= (điều phải chứng minh)

Vậy theo nguyên lí quy nạp toán học, hệ thức b) đúng với mọi n ε N*

c) Với n = 1, vế trái bằng 1, vế phải bằng = 1 nên hệ thức đúng với n = 1.

Đặt vế trái bằng Sn.

Giả sử hệ thức c) đúng với n = k ≥ 1, tức là

Sk = 12 + 22 + 32 + …+ k2 =

Ta phải chứng minh

Thật vậy, từ giả thiết quy nạp ta có:

Sk+1 = Sk + (k + 1)2 = = (k + 1). = (k + 1)

(đpcm)

Vậy theo nguyên lí quy nạp toán học, hệ thức đúng với mọi n ε N*



13 tháng 4 2017

Phân tích nhân tử nhầm=>giải lại

\(A=2n^2-3n^2+n=n\left(2n^2-3n+1\right)=n\left(n-1\right)\left(2n+1\right)\)\(A=n\left(n-1\right)\left(2n+2-3\right)=\left[2n\left(n-1\right)\left(n+1\right)\right]-3\left(n\right)\left(n-1\right)=2B-3C\)

\(\left\{{}\begin{matrix}B⋮3\\C⋮2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}2B⋮6\\3C⋮3\end{matrix}\right.\) \(\Rightarrow A⋮6\) => dpcm

13 tháng 4 2017

Lời giải:

\(A=n\left(2n^3-3n+1\right)=n\left(n-1\right)\left(2n^2+2n-1\right)\)

\(A=n\left(n-1\right)\left[2n\left(n+1\right)-1\right]=2n\left(n-1\right)\left(n+1\right)+n\left(n-1\right)=B-C\)\(\left\{{}\begin{matrix}B⋮2\\B⋮3\end{matrix}\right.\)\(\Rightarrow B⋮6\forall n\in N\)

\(C=n\left(n-1\right)\) không thể chia hết cho 6 với mọi n thuộc N

\(\Rightarrow A\) chỉ chia hết cho 6 với điều kiện \(n\ne3k+2\)

ví dụ đơn giải với k=0 => n= 2

\(A=2.2^3-3.2^2+2=14⋮̸6\)

Kết luận đề sai

22 tháng 11 2017

1/ \(2C^k_n+5C^{k+1}_n+4C^{k+2}_n+C^{k+3}_n\)

\(=2\left(C^k_n+C_n^{k+1}\right)+3\left(C^{k+1}_n+C^{k+2}_n\right)+\left(C^{k+2}_n+C^{k+3}_n\right)\)

\(=2C_{n+1}^{k+1}+3C_{n+1}^{k+2}+C_{n+1}^{k+3}\)

\(=2\left(C_{n+1}^{k+1}+C_{n+1}^{k+2}\right)+\left(C_{n+1}^{k+2}+C^{k+3}_{n+1}\right)\)

\(=2C_{n+2}^{k+2}+C_{n+2}^{k+3}=C_{n+2}^{k+2}+\left(C_{n+2}^{k+2}+C_{n+2}^{k+3}\right)=C_{n+2}^{k+2}+C_{n+3}^{k+3}\)

28 tháng 11 2017

Áp dụng ct:C(k)(n)=C(k)(n-1)+C(k-1)(n-1) có:
................C(k-1)(n-1)= C(k)(n) - C(k)(n-1)
tương tự: C(k-1)(n-2)= C(k)(n-1) - C(k)(n-2)
................C(k-1)(n-3)= C(k)(n-2) -C(k)(n-3)
.........................................
................C(k-1)(k-1)= C(k)(k) (=1)
Cộng 2 vế vào với nhau...-> đpcm

NV
11 tháng 1 2024

1.

Ta có:

\(\left(n+1\right)^2=n^2+2n+1>n\left(n+2\right)\)

Lấy logarit 2 vế:

\(ln\left(n+1\right)^2>ln\left[n\left(n+2\right)\right]\)

\(\Rightarrow2ln\left(n+1\right)>ln\left(n\right)+ln\left(n+2\right)\ge2\sqrt{ln\left(n\right).ln\left(n+2\right)}\)

\(\Rightarrow ln^2\left(n+1\right)>ln\left(n\right).ln\left(n+2\right)\)

\(\Rightarrow\dfrac{ln\left(n+1\right)}{ln\left(n\right)}>\dfrac{ln\left(n+2\right)}{ln\left(n+1\right)}\)

\(\Rightarrow log_n\left(n+1\right)>log_{n+1}\left(n+2\right)\)

NV
11 tháng 1 2024

2.

\(\int\dfrac{x^3-1}{x^4+x}dx=\int\dfrac{2x^3-\left(x^3+1\right)}{x\left(x^3+1\right)}dx=\int\dfrac{2x^2}{x^3+1}dx-\int\dfrac{1}{x}dx\)

\(=\dfrac{2}{3}\int\dfrac{d\left(x^3+1\right)}{x^3+1}-\int\dfrac{dx}{x}\)

\(=\dfrac{2}{3}ln\left|x^3+1\right|-ln\left|x\right|+C\)

9 tháng 4 2017

a) Dễ thấy bất đẳng thức đúng với n = 2

Giả sử bất đẳng thức đúng với n = k ≥ 2, tức là

3k > 3k + 1

Nhân hai vế của (1) vơi 3, ta được:

3k + 1 > 9k + 3 <=> 3k + 1 > 3k + 4 + 6k -1.

Vì 6k - 1 > 0 nên

3k + 1 > 3k + 4 hay 3k + 1 > 3(k + 1) + 1.

tức là bất đẳng thức đúng với n = k + 1.

Vậy 3n > 3n + 1 với mọi số tự nhiên n ≥ 2.

b) Với n = 2 thì vế trái bằng 8, vế phải bằng 7. Vậy bất đẳng thức đúng với n = 2

Giả sử bất đẳng thức đúng với n = k ≥ 2, tức là

2k + 1 > 2k + 3 (2)

Ta phải chứng minh nó cũng đúng với n= k + 1, nghĩa là phải chứng minh

2k + 2 > 2(k + 1) + 3 <=> 2k + 2 > 2k + 5

Nhân hai vế của bất đẳng thức (2) với 2, ta được:

2k + 2 > 4k + 6 <=> 2k + 2 > 2k +5 + 2k + 1.

Vì 2k + 1> 0 nên 2k + 2 > 2k + 5

Vậy 2n + 1 > 2n + 3 với mọi số tự nhiên n ≥ 2.