Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 1 : a) oh là tia đối oz \(\Rightarrow\) zoh thẳng hàng
ot là tia đối của tia ox \(\Rightarrow\) xot thẳng hàng
ta có : xoz = \(\dfrac{100}{2}=50^0\) (oz là tia phân giác của góc xoy)
mà xoz = toh (đối đỉnh) \(\Rightarrow\) toh = 500
b) ta có : toh = xoz (đối đỉnh)
mà toh = 400 \(\Rightarrow\) xoz = 400
\(\Rightarrow\) xoy = 40.2 = 800
bạn ơi tớ bảo phần ab bài 1 tớ biết làm rồi tớ muốn cậu có thể giúp tớ bài 2 và bài 3,bài 1 c,d được không
xin cảm ơn các bạn trước!
Bài 2:
a: \(\left|x\right|=-x\)
nên x<=0
b: \(\left|x\right|>x\)
=>x<0
Đăng từng bài một thôi bạn!
1)\(\left(-\dfrac{5}{13}\right)^{2017}.\left(\dfrac{13}{5}\right)^{2016}\)
\(=\left(-\dfrac{5}{13}\right).\left(-\dfrac{5}{13}\right)^{2016}.\left(\dfrac{13}{5}\right)^{2016}\)
\(=\left(-\dfrac{5}{13}\right).\left(\dfrac{5}{13}\right)^{2016}.\left(\dfrac{13}{5}\right)^{2016}\)
\(=\left(-\dfrac{5}{13}\right).\left(\dfrac{5}{13}.\dfrac{13}{5}\right)^{2016}\)
\(=\left(-\dfrac{5}{13}\right).1^{2016}\)
\(=-\dfrac{5}{13}\)
ĐKXĐ: \(x\ne5\)
a) \(\dfrac{7-x}{x-5}=\dfrac{1}{2}\)
\(\Leftrightarrow2\left(7-x\right)=x-5\)
\(\Leftrightarrow14-2x=x-5\)
\(\Leftrightarrow-2x-x=-5-14\)
\(\Leftrightarrow-3x=-19\)
\(\Leftrightarrow x=\dfrac{19}{3}\)
b, c) cách duy nhất mình biết là dùng Table :v
a,Ta có \(\left(3^3\right)^n:3^n=9\Leftrightarrow3^{3n}:3^n=3^2\Leftrightarrow3n-n=2\Leftrightarrow n=1\)
b,TA có \(\dfrac{5^2}{5^n}=5^1\Leftrightarrow2-n=1\Leftrightarrow n=1\)
Các câu sau để bn tự làm
a) 27n : 3n = 9
\(\Leftrightarrow\) (27 : 3)n = 9
\(\Leftrightarrow\) 9n = 9
\(\Leftrightarrow\) n = 1
b) \(\dfrac{25}{5^n}=5\)
\(\Leftrightarrow\dfrac{5^2}{5^n}=5\)
\(\Leftrightarrow5^n.5=5^2\)
\(\Leftrightarrow5^{n+1}=5^2\)
\(\Leftrightarrow n+1=2\)
n = 2 - 1
n = 1
c) \(\dfrac{81}{\left(-3\right)^n}=-243\)
\(\Leftrightarrow\dfrac{\left(-3\right)^4}{\left(-3\right)^n}=\left(-3\right)^5\)
\(\Leftrightarrow\left(-3\right)^n.\left(-3\right)^5=\left(-3\right)^4\)
\(\Leftrightarrow\left(-3\right)^{n+5}=\left(-3\right)^4\)
\(\Leftrightarrow n+5=4\)
n = 4 - 5
n = -1
Lời giải:
Quy nạp:
Xét \(n=1\Rightarrow 2^{3^n}+1=9\) chia hết cho $3$
Xét \(n=2\Rightarrow 2^{3^n}+1=513\) chia hết cho $9$
........
Giả sử điều trên đúng với $n=k$. Ta cần cm nó cũng đúng với $n=k+1$, tức là \(2^{3^{k+1}}+1\vdots 3^{k+1}\)
Thật vậy:
Với giả sử trên, ta có \(2^{3^k}+1\vdots 3^k\)
Có: \(2^{3^{k+1}}+1=(2^{3^k})^3+1=(2^{3^k}+1)(2^{3^k.2}-2^{3^k}+1)\)
Thấy rằng \(2^{3^k}+1\vdots 3^k\)
\(\left\{\begin{matrix} 2^{2.3^k}=4^{3^k}\equiv 1^{3^k}\equiv 1\pmod 3\\ 2^{3^k}\equiv (-1)^{3^k}\equiv -1\pmod 3\\ 1\equiv 1\pmod 3\end{matrix}\right.\Rightarrow 2^{2.3^k}-2^{3^k}+1\equiv 3\equiv 0\pmod 3\)
Hay \(2^{2.3^k}-2^{3^k}+1\vdots 3\)
Suy ra \(2^{3^{k+1}}+1=(2^{3^k}+1)(2^{2.3^k}-2^{3^k}+1)\vdots 3^{k+1}\)
Do đó ta có đpcm.