K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
17 tháng 9 2021

a. Xét $x\in A\cap (B\cup C)$

$\Rightarrow x\in A$ và $x\in B\cup C$

\(\Rightarrow \left\{\begin{matrix} x\in A\\ \left[\begin{matrix} x\in B\\ x\in C\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow \left[\begin{matrix} \left\{\begin{matrix} x\in A\\ x\in B\end{matrix}\right.\\ \left\{\begin{matrix} x\in A\\ x\in C\end{matrix}\right.\end{matrix}\right.\Rightarrow x\in (A\cap B)\cup (A\cap C)(*)\)

Xét $x\in (A\cap B)\cup (A\cap C)$

$\Rightarrow x\in A\cap B$ hoặc $x\in A\cap C$

$\Rightarrow x\in A$ và $x\in B$ hoặc $x\in C$

Tức là: $x\in A\cap (B\cup C)(**)$

Từ $(*); (**)$ suy ra $A\cap (B\cup C)=(A\cap B)\cup (A\cap C)$

AH
Akai Haruma
Giáo viên
17 tháng 9 2021

b. Xét $x\in (A\setminus B)\setminus C$ bất kỳ

$\Rightarrow x\in A$ và $x\not\in B, x\not\in C$

Vì $x\in A, x\not\in C$ nên $x\in A\setminus C$

Do đó: $(A\setminus B)\setminus C\subset A\setminus C$

20 tháng 10 2021

(A\(\cup\)B)\C 

GIẢ SỬ x\(\in\)C THÌ x\(\notin\)(A\(\cup\)B); x\(\notin\)(A\(\cup\)B) THÌ \(\left[{}\begin{matrix}\left\{{}\begin{matrix}x\in A\\x\notin B\end{matrix}\right.\\\left\{{}\begin{matrix}x\notin A\\x\in B\end{matrix}\right.\end{matrix}\right.\)

 

12 tháng 9 2019

A=[-3,2] B=(0,8] C=(-\(\infty\),-1) D=[6,+\(\infty\))

(A\(\cap\)B)\(\cup\)C=(-\(\infty\),2]

A\(\cup\)(B\(\cap\)C)=[-3,2]

(A\(\cap\)C)\B=[-3,-1)

(D\B)\(\cap\)A=[-3,+\(\infty\))

13 tháng 9 2019

R\A=(-\(\infty\),-3)\(\cup\left(2,+\infty\right)\)

R\B=(-\(\infty\),0]\(\cup\left(8,+\infty\right)\)

R\C=[-1,+\(\infty\))