\(^n\)-1 va 2\(^n\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 11 2015

Ta thấy : 2n-1; 2n;2n+1  là 3 số tự nhiên liên tiếp nên tồn tại một số chia hết cho 3

Mà 2n không chia hết cho 3( vì 2 không chia hết cho 3)

=>​hoặc 2n+1 hoặc 2n-1 chia hết cho 3

=>hoặc 2n+1 hoặc 2n-1 là hợp số

=>2n+1 và 2n-1 không thể đồng thời là 2 số nguyên tố

15 tháng 11 2019

câu a là 1 hàng đẳng thức bạn nhé

Vế trái = (a-b)(a+b)=a^2+ab-ab-b^2=a^2-b^2

b) p^2-1=(p-1)(p+1)

Do p>3 và p là SNT => p ko chia hết cho 3 => p chia 3 dư 1 hoặc 2

+ Nếu p:3 dư 1 thì p-1 chia hết cho 3

+ Nếu p:3 dư 2 thì p+1 chia hết cho 3

=> p^2-1 chia hết cho 3.

Do p>3, p NT=> p lẻ=> p=2k+1

Thay vào đc p^2-1=2k(2k+2)

=4k(k+1)

Do k và k+1 là 2 số tự nhiên liên tiếp => chia hết cho 2

=> 4k(k+1) chia hết cho 8=> p^2-1 chia hết cho 8

Tóm lại p^2-1 chia hết cho 24 do (3,8)=1

2) p^4-1=(p^2-1)(p^2+1)

Theo câu a thì p^2-1 chia hết cho 24

Do p lẻ (p là SNT >3)

=> p^2 cx lẻ => p^2+1 chẵn do 1 lẻ

=> p^2+1 chia hết cho 2

=> p^4-1 chia hết cho 48 (đpcm).

Gọi số cần tìm là d sao cho 2n+3 chia hết cho d ; n+1 Chia hết cho d suy ra d thuộc tập hợp ước chung lớn nhất của 2n+3 và n+1

2n+3 chia hết cho d ; n+1 chia hết cho d

2n+3 chia hết cho d suy ra :2n chia hết cho d

                                            :3 chia hết cho d    \(\Rightarrow\)  D=1

n+1 chia hết cho d suy ra : n chia hết cho d

                                          : 1 chia hết cho d\(\Rightarrow\)d = 1

từ phương trình trên suy ra d=1 

Hay ước chung lớn nhất của 2n+3 và n+1 

Vì hai số nguyên tố cùng nhau có ƯCLN là 1 lên 2n+3 và n+1 là hai số nguyên tố cùng nhau

5 tháng 10 2021

n=8 nha bạn

HT

21 tháng 4 2016

Đặt n2+3n+5 = (*)

Giả sử n=1 => (*) <=> 12+3.1+5 không chia hết cho 121 ( đúng )

Vậy với n=1 đúng

Giả sử (*) đúng với n=k 

=> (*) <=> k2+3k+5

Ta cần c/m (*) đúng với n = k+1

Thật vậy với n= k+1 

=> (*) <=> (k+1)2+3(k+1)+5 

tự viết tiếp

15 tháng 2 2016

3.a) tổng các cs của tử là 3 nên chia hết cho 3

b) tổng các cs của rử là 9 nên chia hết cho 9

15 tháng 2 2016

ủng hộ mình nha

20 tháng 4 2016

a)giả sử \(n^2+2006\) là số chính phương, khi đó đặt \(n^2+2006=a^2\left(n\in Z\right)\)

\(=>\left(a+n\right)\left(a-n\right)=2006\) (*)

TH1: nếu (a-n) và (a+n) khác tính chẵn lẻ thì (*) sai  

TH2: nếu (a-n) và (a+n) cùng tính chẵn lẻ thì (a-n) chia hết cho 2, (a+n) chia hết cho 2 => VT chia hết cho 4

mà VP =2006 không chia hết cho 4 nên không tồn tại n

b) n là số nguyên tố >3 nên n không chia hết cho 3=> n= 3k+1 hoặc n=3k+2

Với n= 3k+1 thì \(n^2+2006=\left(3k+1\right)^2+2006=9k^2+6k+2007\) chia hết cho 3=> \(n^2+2006\) là hợp số

Với n=3k+2 thì \(n^2+2006=\left(3k+2\right)^2+2006=9k^2+12k+2010\) chia hết cho 3=> \(n^2+2006\) là hợp số

21 tháng 3 2019

gọi ƯCLN (16n+3,12n+2) là d

16n+3 chia hết cho d => 48n+9 chia hết cho d 

12n+2 chia hết cho d => 48n + 8 chia hết cho d

=> 48n+9 -  48n + 8  chia hết cho d

=> 1  chia hết cho d

=> d\(\in\){-1;1}

=> \(\frac{16n+3}{12n+2}\)tối giản

21 tháng 3 2019

Để A là phân số tối giãn thì \(16n+3⋮12n+2\)(đặt phân số đó là A nhé)

\(=>16n+3⋮12n+2\)

\(=>48n+9⋮48n+8\)

\(=>48n+9-48n-8⋮48n+8\)

\(=>4⋮12n+2\)