\(B=4^{2n+1}+3^{n+2}\)luôn chia hế...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 8 2015

Cho a là số tự nhiênchia 6 dư 2 và b là số tự nhiên chia 6 dư 3. Chứng minh axb chia hết cho 6

18 tháng 9 2016

Do n( n+1) là hai số tự nhiên liên tiếp ( n thuộc N) => n( n+1) chia hết cho 2 (1)

Do 2n chia hết cho 2 => 2n + 1 chia hết cho 3 ( 2)    ( đoạn này hơi tắt)

Từ (1) và (2) => n ( n+1) ( 2n+1) chia hết cho BCNN( 2, 3) hay n( n+1) ( 2n+1) chia hết cho 6( đpcm) 

k nha

1 tháng 12 2016

1) = 3n(32+1) - 2n(22+1)

2)A=m.n.p

\(\frac{m^2}{\frac{2^2}{5^2}}=\frac{n^2}{\frac{3^2}{4^2}}=\frac{p^2}{\frac{1^2}{6^2}}=\frac{m^2+n^2+p^2}{\frac{2^2}{5^2}+\frac{3^2}{4^2}+\frac{1^2}{6^2}}\)

3) \(\frac{a^2}{\text{\text{c}^2}}=\frac{\text{c}^2}{b^2}=\frac{a^2+\text{c}^2}{b^2+\text{c}^2}\)\(\frac{a^2}{\text{c}^2}=\frac{\text{c}^2}{b^2}=\frac{a^2+\text{c}^2}{\text{c}^2+b^2}\)

mà ab=c2

suy ra đpcm

NV
10 tháng 4 2019

a/ Không chia hết cho 3 mới đung

\(\left\{{}\begin{matrix}6^{2n+1}⋮3\\5^{n+2}⋮̸3\end{matrix}\right.\) \(\Rightarrow6^{2n+1}+5^{n+2}⋮̸3\)

b/

\(2^{100}=2.2^{99}=2.\left(8\right)^{33}\)

\(8\equiv-1\left(mod9\right)\Rightarrow8^{33}\equiv\left(-1\right)^{33}\left(mod9\right)\Rightarrow8^{33}\equiv\left(-1\right)\left(mod9\right)\)

\(\Rightarrow2.8^{33}\equiv-2\left(mod9\right)\Rightarrow2^{100}\) chia 9 dư \(9-2=7\)

\(2^{100}=\left(2^{10}\right)^{10}=1024^{10}\)

\(1024\equiv-1\left(mod25\right)\Rightarrow1024^{10}\equiv\left(-1\right)^{10}\left(mod25\right)\Rightarrow1024^{10}\equiv1\left(mod25\right)\)

Vậy \(2^{100}\) chia 25 dư 1

10 tháng 4 2019

ủa sai đề à