\(\frac{7n+4}{5n+3}\) luôn là phân số t...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Gọi d là ƯCLN(7n+4;5n+3)

Ta có:7n+4\(⋮\)d;5n+3\(⋮\)d

=>5*(7n+4)\(⋮\)d;7*(5n+3)\(⋮\)d

=>35n+20\(⋮\)d;35n+21\(⋮\)d

=>[(35n+21)-(35n+20)]\(⋮\)d

=>[35n+21-35n-20]\(⋮\)d

=>1\(⋮\)d

=>d=1

Vì ƯCLN(7n+4;5n+3)=1 nên phân số \(\frac{7n+4}{5n+3}\) luôn luôn tối giản(nEN)

9 tháng 5 2016

Gọi d là UCLN (7n+4;5n+3)

=>*\(\left(7n+4\right)⋮d\Rightarrow5.\left(7n+4\right)⋮d\)

     *\(\left(5n+3\right)⋮d\Rightarrow7.\left(5n+3\right)⋮d\)

Suy ra: 5.(7n+4)-7.(5n+3) chia hết cho d

=>35n+20-35n-21 chia hết cho d

=>-1 chia hết cho d

=> d chỉ có thể là 1 

=> P/s \(\frac{7n+4}{5n+3}\) tối giản

17 tháng 3 2018

dựa vào tìm ước chung lớn nhất

dễ mà

cậu lm đc

17 tháng 3 2018

gọi d là ƯC(7n+4; 5n+3)

\(\Rightarrow\hept{\begin{cases}7n+4⋮d\\5n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}5\left(7n+4\right)⋮d\\7\left(5n+3\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}35n+20⋮d\\35n+21⋮d\end{cases}}}\)

\(\Rightarrow\left(35n+21\right)-\left(35n+20\right)⋮d\)

\(\Rightarrow35n+21-35n-20⋮d\)

\(\Rightarrow\left(35n-35n\right)+\left(21-20\right)⋮d\)

\(\Rightarrow0+1⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=\pm1\)

\(\Rightarrow\frac{7n+4}{5n+3}\) là phân số tối giản với mọi n 

Gọi d là ƯCLN(5n+2;3n+1)

Ta có 5n+2\(⋮\)d;3n+1\(⋮\)d

=>3*(5n+2)\(⋮\)d;5*(3n+1)\(⋮\)d

=>15n+6\(⋮\)d;15n+5\(⋮\)d

=>[(15n+6)-(15n+5)]\(⋮\)d

=>[15n+6-15n-5]\(⋮\)d

=>1\(⋮\)d

=>d=1

Vì ƯCLN(5n+2;3n+1)=1 nên phân số \(\frac{5n+2}{3n+1}\) luôn là phân số tối giản(nEN*)

 
3 tháng 5 2019

gọi d là ƯC(7n + 4; 5n + 3) 

=> 7n + 4 và 5n + 3 ⋮ d

=> 5(7n + 4) và 7(5n + 3) ⋮ d

=> 35n + 20 và 35n + 21 ⋮ d

=> (35n + 21) - (35n +20) ⋮ d

=> 1 ⋮ d

=> d = + 1

=> 7n+4/5n+3 là phân số tối giản

Gọi a C Ư(7n+4;5n+3)

=>7n+4 và 5n+3 đều chia hết cho a

=>5(7n+4) và 7(5n+3) chia hết cho a

=>35n+20 và 35n+21 chia hết cho a

=>(35n+21) - (35n+20) chia hết cho a

=>1chia hết cho a

=>d C { + 1 }
Vậy7n+45n+3 là phân số tối giản

10 tháng 4 2016

Gọi d là Ư(7n+4; 5n+3) (với d thuộc N*)
Ta có: 7n+4 chia hết cho d  ;  5n+3 chia hết cho d
            5.(7n+4) chia hết cho d  ;  7.(5n+3) chia hết cho d
            35n+20 chia hết cho d  ;  35n+21 chia hết cho d
           (35n+21)-(35n+20) chia hết cho d
           1 chia hết cho d
Suy ra: d thuộc Ư(1). Do đó d=1
Vậy 7n+4/5n+3 là phân số tối giản.

2 tháng 8 2017

Gọi d là ƯCLN của 7n và 7n + 1

=> 7n chia hết cho d và 7n + 1 chia hết cho d

=> (7n + 1) - 7n chia hết cho d

=> 1 chia hết cho d

=> d = 1 

Vậy phân số \(\frac{7n}{7n+1}\) tối giản với mọi n 

2 tháng 8 2017

Gọi ước chung lớn nhất cảu 7n và 7n+1 là d 

Ta có: 7n chia hết cho d ; 7n+1 chia hết cho d 

=> 7n+1 - 7n chia hết cho d

=> 1 chia hết cho d

=> d = 1

=> uwocschung lớ nhất của 7 n và 7n+1 là 1

=> \(\frac{7n}{7n+1}\)tối giản

=> đpcm

12 tháng 7 2016

                     Gọi \(\left(5n+1,20n+3\right)\)\(=d\)\(\left(d\in N\right)\)

                    \(\Rightarrow\hept{\begin{cases}5n+1:d\\20n+3:d\end{cases}}\Rightarrow\hept{\begin{cases}4.\left(5n+1\right):d\\20n+3:d\end{cases}}\Rightarrow\hept{\begin{cases}20n+4:d\\20n+3:d\end{cases}}\)

                     \(\Rightarrow\left(20n+4\right)-\left(20n+3\right):d\)

                     hay 1 : d => \(d\inƯ\left(1\right)\)

                     Mà Ư(1) = {-1;1} => d \(\in\){-1;1}

                   Vì d là lớn nhất nên d = 1 hay \(\left(5n+1,20n+3\right)=1\)

                  => 5n+1 và 20n+3 là 2 số nguyên tố cùng nhau

                  Vậy \(\frac{5n+1}{20n+3}\)là phân số tối giản với mọi số tự nhiên n

                    Dấu chia hết mk viết là dấu chia,ủng hộ mk nha !!!

12 tháng 7 2016

Gọi d = ƯCLN(5n+1, 20n+3) (d thuộc N*)

=> 5n+1 chia hết cho d; 20n+3 chia hết cho d

=> 4.(5n + 1) chia hết cho d; 20n+3 chia hết cho d

=> 20n+4 chia hết cho d; 20n+3 chia hết cho d

=> (20n+4) - (20n+3) chia hết cho d

=> 20n + 4 - 20n - 3 chia hết cho d

=> 1 chia hết cho d

Mà d thuộc N* => d = 1

=> ƯCLN(5n+1, 20n+3) = 1

=> phân số 5n+1/20n+3 tối giản (đpcm)

Chú ý: phân số tối giản là phân số có ƯCLN của tử và mẫu = 1

Ủng hộ mk nha ^_-

15 tháng 5 2016

Gọi d là ƯCLN(2n-1;8n-3)

ta có 2n-1\(⋮\)d;8n-3\(⋮\)d

=>4*(2n-1)\(⋮\)d;8n-3\(⋮\)d

=>8n-4\(⋮\)d;8n-3\(⋮\)d

=>[(8n-4)-(8n-3)]\(⋮\)d

=>[8n-4-8n+3]\(⋮\)d

=>-1\(⋮\)d

=>d=1

Vì ƯCLN(2n-1;8n-3)=1 nên phân số \(\frac{2n-1}{8n-3}\) luôn tối giản(nEN)

15 tháng 5 2016

Gọi d là UCLN(2n-1;8n-3)

=>2n-1 chia hết cho d và 8n-3 chia hết cho d

=>4.(2n-1) chia hết cho d và 8n-3 chia hết cho d

=>8n-4 chia hết cho d và 8n-3 chia hết cho d

=>8n-4-8n+3 chia hết cho d

=>-1 chia hết cho d =>d=1

=>điều phải chứng minh

4 tháng 5 2017

Gọi d là ước chung lớn nhất của 5n + 1 và 20n + 3

\(\Rightarrow\)\(5n+1⋮d\);      \(20n+3⋮d\)

\(\Rightarrow\)\(4.\left(5n+1\right)⋮d\);     \(20n+3⋮d\)

\(\Leftrightarrow\)\(20n+4⋮d\)\(20n+3⋮d\)

\(\Rightarrow20n+4-\left(20n+3\right)⋮d\)

Hay  \(1⋮d\Rightarrow d=1\Rightarrow dpcm\)

Ai thấy đúng thì ủng hộ nha !!!

17 tháng 5 2016

Gọi d là ƯCLN(2n+5;n+2)

Ta có 2n+5\(⋮\)d

           n+2\(⋮\)d=>2*(n+2)\(⋮\)d=>2n+4\(⋮\)d

=>[(2n+5)-(2n+4)]\(⋮\)d

=>[2n+5-2n-4]\(⋮\)d

=>1\(⋮\)d

=>d=1

Vì ƯCLN(2n+5;n+2)=1 nên phân số \(\frac{2n+5}{n+2}\) luôn tối giản(nEN)