\(10^{3^n}-1⋮3^{n+2}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 5 2016

Gọi d là ƯCLN(n+3;3n+8)

Ta có n+3\(⋮\)d=>3*(n+3)\(⋮\)d=>3n+9\(⋮\)d

 Ta có 3n+8\(⋮\)d

=>[(3n+9)-(3n+8)]\(⋮\)d

=>[3n+9-3n-8]\(⋮\)d

=>1\(⋮\)d

=>d=1

Vì ƯCLN(n+3;3n+8)=1 nên phân số \(\frac{n+3}{3n+8}\) luôn tối giản(nEN)

 

17 tháng 5 2016

Gọi d là ƯCLN(n+3;3n+8)

Ta có:n+3\(⋮\)d

          3n+8\(⋮\)d\(\Rightarrow\)3(n+4)\(⋮\)d\(\Rightarrow\)n+4\(⋮\)d\(\Rightarrow\)n+2\(⋮\)d

\(\Rightarrow\)[n+3-n-2]\(⋮\)d

\(\Rightarrow\)1\(⋮\)d

         Vậy ƯCLN(n+3;3n+8)là 1 nên phân số \(\frac{n+3}{3n+8}\) tối giản(n\(\in\)N)

15 tháng 5 2016

Gọi d là ƯCLN(2n-1;8n-3)

ta có 2n-1\(⋮\)d;8n-3\(⋮\)d

=>4*(2n-1)\(⋮\)d;8n-3\(⋮\)d

=>8n-4\(⋮\)d;8n-3\(⋮\)d

=>[(8n-4)-(8n-3)]\(⋮\)d

=>[8n-4-8n+3]\(⋮\)d

=>-1\(⋮\)d

=>d=1

Vì ƯCLN(2n-1;8n-3)=1 nên phân số \(\frac{2n-1}{8n-3}\) luôn tối giản(nEN)

15 tháng 5 2016

Gọi d là UCLN(2n-1;8n-3)

=>2n-1 chia hết cho d và 8n-3 chia hết cho d

=>4.(2n-1) chia hết cho d và 8n-3 chia hết cho d

=>8n-4 chia hết cho d và 8n-3 chia hết cho d

=>8n-4-8n+3 chia hết cho d

=>-1 chia hết cho d =>d=1

=>điều phải chứng minh

10 tháng 5 2015

1.

Ta có: 10^n + 18n - 1 = (10^n - 1) + 18n = 99...9 + 18n (số 99...9 có n chữ số 9) 
= 9(11...1 + 2n) (số 11...1 có n chữ số 1) = 9.A 
Xét biểu thức trong ngoặc A = 11...1 + 2n = 11...1 - n + 3n (số 11...1 có n chữ số 1). 
Ta đã biết một số tự nhiên và tổng các chữ số của nó sẽ có cùng số dư trong phép chia cho 3. Số 11...1 (n chữ số 1) có tổng các chữ số là 1 + 1 + ... + 1 = n (vì có n chữ số 1). 
=> 11...1 (n chữ số 1) và n có cùng số dư trong phép chia cho 3 => 11...1 (n chữ số 1) - n chia hết cho 3 => A chia hết cho 3 => 9.A chia hết cho 27 hay 10^n + 18n - 1 chia hết cho 27 (đpcm)

đúng cái nhe bạn

10 tháng 5 2015

2.

Gọi d là ƯCLN (16n+3; 12n+2)

=> 16n+3 chia hết cho d; 12n+2 chia hết cho d

Nên 3. (16n+3) chia hết cho d; 4. (12n+2) chia hết cho d

=> 48n+9 chia hết cho d; 48n+8 chia hết cho d

=> (48n+9)-(48n+8) chia hết cho d

=>            1           chia hết cho d

=> d \(\in\) {1; -1}

Vậy phân số \(\frac{16n+3}{12n+2}\) là phân số tối giản.

7 tháng 11 2016

a) Gọi 3 số tự nhiên liên tiếp là \(x,x+1,x+2\left(x\in N\right)\)

- Nếu \(x=3k\) ( thỏa mãn ). Nếu \(x=3k+1\) thì \(x+2=3k+1+2=\left(3k+3\right)⋮3\)

- Nếu \(x=3k+2\) thì \(x+1=3k+1+2=\left(3k+3\right)⋮3\)

Vậy trong 3 số tự nhiên liên tiêp có 1 số chia hết cho 3.

b) Nhận thấy \(17^n,17^n+1,17^n+2\) là 3 số tự nhiên liên tiếp mà \(17^n\) không chia hết cho 3, nên trong 2 số còn lại 1 số phải \(⋮3\)

Do vậy: \(A=\left(17^n+1\right)\left(17^n+2\right)⋮3\)

7 tháng 11 2016

Cám ơn bạn nha

8 tháng 6 2017

Với n thuộc N ta có 1^n=1(1 lũy thừa bao nhiêu cũng = chính nó với N) 
=> a=1 

8 tháng 6 2017

a=1

k minh nha

............