\(\left(n+2\right)^2-\left(n-2\right)^2\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 7 2018

(n+2)2-(n-2)2

=(n+2+n-2)(n+2-n+2)

=2n.4

=8n ⋮ 8

=> Đpcm

21 tháng 7 2018

Có: \(\left(n+2\right)^2-\left(n-2\right)^2\)

\(=\left(n+2+n-2\right)\left(n+2-n+2\right)\)

\(=2n.4\)

\(=8n⋮8n\) \(\left(8⋮8\right)\)

Vậy \(\left(n+2\right)^2-\left(n-2\right)^2⋮8\) (ĐPCM)

5 tháng 7 2016

xem lại câu a nhé bạn

18 tháng 9 2018

d) ( n + 7 )2 - ( n - 5 )2

= n2 + 14n + 49 - n2 + 10n - 25

= 24n + 24

= 24 ( n + 1 ) chia hết cho 24 ( đpcm )

18 tháng 9 2018

e) 

( 7n + 5 )2 - 25

= ( 7n + 5 )2 - 52

= ( 7n + 5 - 5 ) ( 7n + 5 + 5 )

= 7n ( 7n + 10 ) chia hết cho 7 ( đpcm )

22 tháng 10 2017

\(\text{ Ta có : }\left(n+2\right)^2-\left(n+2\right)^2=0⋮8\left(đpcm\right)\)

Vậy...............

Sai đề rồi :))

22 tháng 10 2017

\(\left(n+2\right)^2-\left(n-2\right)^2⋮8\)

\(\text{Ta có : }\left(n+2\right)^2-\left(n-2\right)^2\\ \\ =\left(n+2+n-2\right)\left(n+2-n+2\right)\\ \\ =2n\cdot4\\ \\ =8n⋮8\left(đpcm\right)\)

Vậy \(\left(n+2\right)^2-\left(n-2\right)^2⋮8\)

21 tháng 7 2016

a) \(A=\left(4n+3\right)^2-5^2=\left(4n+3-5\right)\left(4n+3+5\right)=\left(4n-2\right)\left(4n+8\right)\)

\(=8\left(n-1\right)\left(n+2\right)\). Vì A chứa thừa số 8 nên A chia hết cho 8  

b) \(B=\left(2n+3\right)^2-3^2=\left(2n+3-3\right)\left(2n+3+3\right)=2n\left(2n+6\right)=4n\left(n+3\right)\)

Vì B chứa thừa số 4 nên B chia hết cho 4

30 tháng 9 2018

\(n^2\left(n+1\right)+2n\left(n+1\right)\)

\(=\left(n+1\right)\left(n^2+2n\right)\)

\(=\left(n+1\right)n\left(n+2\right)\)

\(=n\left(n+1\right)\left(n+2\right)\)

vì tích của 3 số tự nhiên liên tiếp chia hết cho 6

Mặt khác n và n+1 và n+2 là 3 số tự nhiên liên tiếp

\(\Rightarrow n\left(n+1\right)\left(n+2\right)⋮6\forall n\left(đpcm\right)\)

27 tháng 10 2017

Bài 2:Tìm x biết

(4x+3)3+(5−7x)3+(3x−8)3=0\" id=\"MathJax-Element-4-Frame\">\\(\\left(4x+3\\right)^3+\\left(5-7x\\right)^3+\\left(3x-8\\right)^3=0\\)

\\(\\Leftrightarrow\\left[\\left(4x\\right)^3+3.\\left(4x\\right)^2.3+3.4x.3^2+3^3\\right]+\\left[5^3-3.5^2.7x+3.5.\\left(7x\\right)^2-\\left(7x\\right)^3\\right]+\\left[\\left(3x\\right)^3-3.\\left(3x\\right)^2.8+3.3x.8^2-8^3\\right]=0\\)

\\(\\Leftrightarrow64x^3+144x^2+108x+27+125-525x+735x^2-343x^3+27x^3-216x^2+576x-512=0\\)

\\(\\Leftrightarrow-252x^3+663x^2+159x-360=0\\)

\\(\\Leftrightarrow3\\left(-84x^3+221x^2+53x-120\\right)=0\\)

 

26 tháng 7 2019

M bị phê đá à con

8 tháng 8 2018

Nè, bài này mình chỉ làm được hai câu a,b thoi nha

a) Chứng minh: 432 + 43.17 chia hết cho 16

432 + 43.17 = 43.(43 + 17) = 43.60 ⋮ 60

b) Chứng minh: n2.(n + 1) + 2n(x + 1) chia hết cho 6 với mọi n ∈ Z

n2(n + 1) + 2n(n + 1) = (n2 + 2n)(n + 1) = n(n + 1)(n + 2)

mà tích ba số tự nhiên liên tiếp chia hết cho 6 (một số chia hết cho 2, một số chia hết cho 3, UWCLL (2;3) = 1)

⇒n2 .(n + 1) + 2n(n + 1) + n(n + 1)(n + 2) ⋮ 6

11 tháng 11 2016

A = (x2+x-1)2-1 = ( x+ x -2 )( x+ x ) = x(x+1)( x2 -1 + x -1 ) = x.( x + 1 ).[ ( x ​- 1 ).( x + 1 ) + x - 1 ) 

= x.( x + 1 ).( x ​- 1 ).( x + 2 )      ( Tích 4 số liên tiếp )

Mà trong đó có tích 2 số chẵn liên tiếp <=> A chia hết cho 8

trong đó có tích 3 số  liên tiếp <=> A chia hết cho 3

 ( 3;8 ) = 1

=> A chia hết cho 8.3 = 24