\(3^{n+3}-2.3^n+2^{n+5}-7.2^n\)chia...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 4 2017

có \(3^{n+3}-2.3^n+2^{n+5}-7.2^n\)=\(3^n.27-2.3^n+2^n.32-7.2^n\)=\(3^n\left(27-2\right)+2^n\left(32-7\right)\)

=\(25\left(3^n+2^n\right)⋮25\)

16 tháng 2 2020

        3n + 3 - 2 . 3n + 2n + 5 - 7 . 2n

= 3n . ( 33 - 2 ) + 2n . ( 25 - 7 )

= 3n . 25 + 2n . 25

= 25. ( 3n + 2n )

Vì 25 \(⋮\)25

Nên 25. ( 3n + 2n ) \(⋮\)25

Vậy   3n + 3 - 2 . 3n + 2n + 5 - 7 . 2n \(⋮\) 25

học tốt nhé bạn ^^

29 tháng 10 2017

=\(3^n\).\(3^2\)-\(2^n\).\(2^2\)+\(3^n\)-\(2^n\)

=\(^{3^n}\).9 - \(2^n\).4 +\(^{3^n}\)\(2^n\)

=10 .\(3^n\)-5.\(2^n\)

=10.\(3^n\)-5.2.\(2^{n-1}\)

=10 .(\(3^n\)-\(2^n\) )

=> chia hết cho 10

29 tháng 10 2017

Ta có: \(3^{n+2}-2^{n+2}+3^n-2^n\)

\(=3^{n+2}+3^n-\left(2^{n+2}+2^n\right)\)

\(=3^n\cdot\left(3^2+1\right)-2^n\cdot\left(2^2+1\right)\)

\(=3^n\cdot10-2^n\cdot5\)

\(=3^n\cdot10-2^{n-1}\cdot2\cdot5\)

\(=3^n\cdot10-2^{n-1}\cdot10\)

\(=\left(3^n-2^{n-1}\right)\cdot10⋮10\left(dpcm\right)\)

18 tháng 2 2017

a, Ta có : 8.2n + 1n + 1 

= 8.2n + 1 (vì 1n + 1 lúc nào cũng bằng 1)

= 23 + n . 1

Mà 23 + n luôn luôn ko chia hết cho10

Nên 8.2n + 1n + 1  ko chi hết cho10

22 tháng 7 2017

Ta có: \(3^{n+2}-2^{n+2}+3^n-2^n=3^{n+2}+3^n-\left(2^{n+2}+2^n\right)\)

Thấy: \(3^{n+2}+3^n=3^n.2^2+3^n=9.3^n+3^n=3^n.\left(9+1\right)=3^n.10\)

\(\Rightarrow3^{n+2}+3^n⋮10\)\(\left(1\right)\)

\(2^{n+2}+2^n=4.2^n+2^n==2^n\left(4+1\right)=2^n.5=2.2^{n-1}.5=10.2^{n-1}\)

\(\Rightarrow2^{n+2}+2^n⋮10\)\(\left(2\right)\)

Từ (1) và (2) \(\Rightarrow3^{n+2}+2^n-\left(2^{n+2}+2^n\right)⋮10\Rightarrow3^{n+2}-2^{n+2}+3^n-2^n⋮10\) (đpcm)

k!

11 tháng 2 2019

a, \(A=\frac{2^{12}\cdot3^5-4^6\cdot9^2}{(2^2\cdot3)^6+8^4\cdot3^5}-\frac{5^{10}\cdot7^3-25^5\cdot49^2}{(125\cdot7)^3+5^9\cdot14^3}\)

\(A=\frac{2^{12}\cdot3^5-2^{12}\cdot3^4}{2^{12}\cdot3^6+2^{12}\cdot3^5}-\frac{5^{10}\cdot7^3-5^{10}\cdot7^4}{5^9\cdot7^3+5^9\cdot2^3\cdot7^3}\)

\(A=\frac{2^{12}\cdot3^4(3-1)}{2^{12}\cdot3^5(3+1)}-\frac{5^{10}\cdot7^3(1-7)}{5^9\cdot7^3(1+2^3)}\)

\(A=\frac{2^{12}\cdot3^4\cdot2}{2^{12}\cdot3^5\cdot4}-\frac{5^{10}\cdot7^3\cdot(-6)}{5^9\cdot7^3\cdot9}=\frac{1}{6}-\frac{-10}{3}=\frac{7}{2}\)

11 tháng 2 2019

b,\(3^{n+2}-2^{n+2}+3^n-2^n\)

\(=(3^{n+2}+3^n)-(2^{n+2}-2^n)\)

\(=(3^n\cdot3^2+3^n)-(2^n\cdot2^2-2^n)\)

\(=3^n\cdot(3^2+1)-2^n\cdot(2^2+1)\)

\(=3^n\cdot9+1-2^n\cdot4+1\)

\(=3^n\cdot10-2^n\cdot5\)

Vì \(2\cdot5⋮10\Rightarrow2^n\cdot5⋮10\)

\(3^n\cdot10⋮10\)

Vậy : ....

5 tháng 3 2017

a) Ta có: \(8\times2^n+2^{n+1}\) \(=8\times2^n+2^n\times2\) \(=2^n\times\left(8+2\right)\) \(=2^n\times10\) \(=...0\)

Vậy \(8\times2^n+2^{n+1}\) có tận cùng bằng chữ số 0 (đpcm).

b) Ta có: \(3^{n+3}-2\times3^n+2^{n+5}-7\times2^n\) \(=3^n\times3^3-2\times3^n+2^n\times2^5-7\times2^n\) \(=3^n\times\left(3^3-2\right)+2^n\times\left(2^5-7\right)\) \(=3^n\times\left(27-2\right)+2^n\times\left(32-7\right)\) \(=3^n\times25+2^n\times25\) \(=\left(3^n+2^n\right)\times25\)

\(25⋮25\)

nên \(\left(3^n+2^n\right)\times25⋮25\)

Vậy \(3^{n+3}-2\times3^n+2^{n+5}-7\times2^n\) chia hết cho 25 (đpcm).

19 tháng 11 2016

3^n+2=3^n .3^2=9.3^2

2^n+2= 2^n. 2^2= 4.2^2

=>3^n+2- 2^n+2 +3^n- 2^n=9.3^n -4.2^n +3^n -2^n

=3^n.(9+1) -2^n.(4+1)=10.3^n -2^n.5

Vì:10.3^n chia hết cho 10 (mình ko bít viết dấu chia hết)

2^n chia hết cho 2; 5 chia hết cho5; 2,5 là số nguyên tố cùng nhau,n>0

=>2^n.5 chia hết cho 10 

dạy mình viết dấu chia hết đi!!!!!!!!!!!!!!!!