K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
23 tháng 3 2019

Câu 1: Dùng biến đổi tương đương:

a/ \(3\left(m+1\right)+m< 4\left(2+m\right)\)

\(\Leftrightarrow3m+3+m< 8+4m\)

\(\Leftrightarrow4m+3< 8+4m\)

\(\Leftrightarrow3< 8\) (đúng), vậy BĐT ban đầu là đúng

b/ \(\left(m-2\right)^2>m\left(m-4\right)\)

\(\Leftrightarrow m^2-4m+4>m^2-4m\)

\(\Leftrightarrow4>0\) (đúng), vậy BĐT ban đầu đúng

Câu 2:

a/ \(b\left(b+a\right)\ge ab\)

\(\Leftrightarrow b^2+ab\ge ab\)

\(\Leftrightarrow b^2\ge0\) (luôn đúng), vậy BĐT ban đầu đúng

b/ \(a^2-ab+b^2\ge ab\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)

NV
23 tháng 3 2019

Câu 3:

a/ \(10a^2-5a+1\ge a^2+a\)

\(\Leftrightarrow9a^2-6a+1\ge0\)

\(\Leftrightarrow\left(3a-1\right)^2\ge0\) (luôn đúng)

b/ \(a^2-a\le50a^2-15a+1\)

\(\Leftrightarrow49a^2-14a+1\ge0\)

\(\Leftrightarrow\left(7a-1\right)^2\ge0\) (luôn đúng)

Câu 4:

Ta có: \(\frac{1}{\left(n+1\right)\sqrt{n}}=\frac{\sqrt{n}}{n\left(n+1\right)}=\sqrt{n}\left(\frac{1}{n}-\frac{1}{n+1}\right)=\left(1+\frac{\sqrt{n}}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)< 2\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

\(\Rightarrow VT=\frac{1}{2\sqrt{1}}+\frac{1}{3\sqrt{2}}+...+\frac{1}{\left(n+1\right)\sqrt{n}}\)

\(\Rightarrow VT< 2\left(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

\(\Rightarrow VT< 2\left(1-\frac{1}{\sqrt{n+1}}\right)< 2\)

Bài 1: 

\(=a^8+2a^4+1-a^4\)

\(=\left(a^4+1\right)^2-a^4\)

\(=\left(a^4-a^2+1\right)\left(a^4+a^2+1\right)\)

\(=\left(a^4-a^2+1\right)\left(a^4+2a^2+1-a^2\right)\)

\(=\left(a^4-a^2+1\right)\left(a^2+1-a\right)\left(a^2+1+a\right)\)

16 tháng 6 2016

a)ko bít đề bắt làm j

b)Px=x(1+x+x2+...+x2015+x2018)

Px=x+x2+...+x2017

Px-P=(x+x2+...+x2017)-(1+x+x2+...+x2015+x2018)

P(x-1)=x2017-1

P=(x2017-1)/(x-1)

17 tháng 6 2016

phần đầu sai 1 tí ở gần cuối của dòng bn tự sửa nhé

21 tháng 2 2018

\(A=n^3+\left(n+1\right)^3+\left(n+2\right)^3\)

\(=n^3+n^3+3n^2+3n+1+n^3+12n+6n^2+8\)

\(=3n^3+9n^2+15n+9\)

\(=3\left(n^3+5n\right)+9\left(n^2+1\right)\)

Ta thấy \(n^3+5n=n^3-n+6n=\left(n-1\right)n\left(n+1\right)+6n\)

\(\left(n-1\right)n\left(n+1\right)\) là tích 3 số nguyên liên tiếp nên \(\left(n-1\right)n\left(n+1\right)⋮3\)\(6n⋮3\) với n nguyên

\(\Rightarrow n^3+5n⋮3\Rightarrow3\left(n^3+5n\right)⋮9\)

\(9\left(n^2+1\right)⋮9\forall n\in Z\) nên \(3\left(n^3+5n\right)+9\left(n^2+1\right)⋮9\)

Hay \(A⋮9\) (đpcm)

22 tháng 2 2018

dung rui

25 tháng 9 2018

a/ n thuộc Z nha

a: \(=3n^4-3n^3-11n^3+11n^2+10n^2-10n\)

\(=\left(n-1\right)\left(3n^3-11n^2+10n\right)\)

\(=n\left(n-1\right)\left(n-2\right)\left(3n-5\right)\)

\(=n\left(n-1\right)\left(n-2\right)\left(3n+3-8\right)\)

\(=3n\left(n-1\right)\left(n+1\right)\left(n-2\right)-8n\left(n-2\right)\left(n-1\right)\)

Vì n;n-1;n+1;n-2 là 4 số liên tiếp

nên n(n-1)(n+1)(n+2) chia hết cho 4!=24

mà -8n(n-2)(n-1) chia hết cho 24

nên A chia hết cho 24

b: \(=n\left(n^4-5n^2+4\right)\)

\(=n\left(n-1\right)\left(n-2\right)\left(n+1\right)\left(n+2\right)\)

Vì đây là 5 số liên tiếp

nên \(n\left(n-1\right)\cdot\left(n-2\right)\left(n+1\right)\left(n+2\right)⋮5!=120\)

 

8 tháng 8 2016

\(n^4-1=\left(n^2\right)^2-1^2=\left(n^2-1\right)\left(n^2+1\right)=\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\)

n lẻ  

=> n - 1 và n + 1 chẵn

Tích của 2 số chẵn liên tiếp sẽ chia hết cho 8

=> Biểu thức trên chia hết cho 8 với mọi n lẻ (đpcm)

8 tháng 8 2016

ai giải giúp mình bài 2 và bài 3 với

DD
15 tháng 3 2021

\(m^2+n^2+\frac{1}{4}\ge2mn+m-n\)

\(\Leftrightarrow m^2+n^2+\frac{1}{4}-2mn-m+n\ge0\)

\(\Leftrightarrow m^2+n^2+\left(\frac{1}{2}\right)^2-2mn-2.\frac{1}{2}m+2.\frac{1}{2}n\ge0\)

\(\Leftrightarrow\left(n-m+\frac{1}{2}\right)^2\ge0\)

Biểu thức cuối luôn đúng mà ta biến đổi tương đương nên ta có đpcm. 

15 tháng 3 2021

m2 + n2 + 1/4 ≥ 2mn + m - n 

<=> 4m2 + 4n2 + 1 ≥ 8mn + 4m - 4n

<=> 4m2 + 4n2 + 1 - 8mn + 4m - 4n ≥ 0

<=> ( 2m - 2n + 1 )2 ≥ 0 ( đúng )

Vậy ta có đpcm