Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đpcm<=> 5/9.14+5/14.19+...+5/(5n-1)(5n+4)<1/9
<=>1/9-1/5n+4<1/9
<=>5n-5/45n+36<1/9(đúng với mọi n>=2)
Vậy ddpcm là đúng
kệ!! cái loại người chỉ dc cá mách lẻo là ko ai bằng! ra kia cho người khác trả lời câu hỏi!! chắn đường chắn lối tốn cả diện tích!!
Ta có\(\frac{3}{9.14}+\frac{3}{14.19}+...+\frac{3}{\left(5n-1\right)\left(5n+4\right)}=\frac{3}{5}\left(\frac{5}{9.14}+\frac{5}{14.19}+...+\frac{5}{\left(5n-1\right)\left(5n+4\right)}\right)\)
\(=\frac{3}{5}\left(\frac{1}{9}-\frac{1}{14}+\frac{1}{14}-\frac{1}{19}+...+\frac{1}{5n-1}-\frac{1}{5n+4}\right)=\frac{3}{5}\left(\frac{1}{9}-\frac{1}{5n+4}\right)=\frac{1}{15}-\frac{3}{25n+20}\)(1)
kết hợp điều kiện ta có \(\frac{3}{25n+20}\ge\frac{3}{25.2+20}=\frac{3}{70}>0\)
=> \(\frac{3}{9.14}+\frac{3}{14.19}+...+\frac{3}{\left(5n-1\right)\left(5n+4\right)}< \frac{1}{15}\)(đpcm)
Đặt :
\(A=\dfrac{3}{9.14}+\dfrac{3}{14.19}+......................+\dfrac{3}{\left(5n-1\right)\left(5n+4\right)}\)
\(A.\dfrac{5}{3}=\dfrac{5}{9.14}+\dfrac{5}{14.19}+..................+\dfrac{5}{\left(5n-1\right)\left(5n+1\right)}\)
\(A.\dfrac{5}{3}=\dfrac{1}{9}-\dfrac{1}{14}+\dfrac{1}{14}-\dfrac{1}{19}+..................+\dfrac{1}{5n-1}-\dfrac{1}{5n+4}\)
\(A.\dfrac{5}{3}=\dfrac{1}{9}-\dfrac{1}{5n+4}\)
\(A=\left(\dfrac{1}{9}-\dfrac{1}{5n+4}\right):\dfrac{3}{5}\)
\(A=\left(\dfrac{1}{9}-\dfrac{1}{5n+\text{4}}\right).\dfrac{3}{5}\)
\(A=\dfrac{1}{9}.\dfrac{3}{5}-\dfrac{1}{5n+4}.\dfrac{3}{5}\)
\(A=\dfrac{1}{15}-\dfrac{1}{5.\left(5n+4\right)}\)
\(\Rightarrow A< \dfrac{1}{15}\)
\(\Rightarrowđpcm\)
Chúc bn học tốt!!!!!!!!!!
Đặt \(A=\frac{3}{9.14}+\frac{3}{14.19}+.......+\frac{3}{\left(5n-1\right)\left(5n+4\right)}\)
\(5A=\frac{15}{9.14}+\frac{15}{14.19}+.....+\frac{15}{\left(5n-1\right)\left(5n+4\right)}\)
\(5A=3.\left(\frac{5}{9.14}+\frac{5}{14.19}+......+\frac{5}{\left(5n-1\right)\left(5n+4\right)}\right)\)
\(5A=3.\left(\frac{1}{9}-\frac{1}{14}+\frac{1}{14}-\frac{1}{19}+.....+\frac{1}{5n-1}-\frac{1}{5n+4}\right)\)
\(5A=3.\left(\frac{1}{9}-\frac{1}{5n+4}\right)\)
\(5A=\frac{1}{3}-\frac{1}{5n+4}\)
=> \(5A<\frac{1}{3}\)
=> \(A<\frac{1}{3}:5\)
hay \(A<\frac{1}{15}\) \(\left(đpcm\right)\)
Nhớ nhé bạn
nhớ bạn