Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1\)
\(A=11^9+11^8+11^7+...+11+1\)
\(\Rightarrow A=11^9+11^8+11^7+...+11^1+11^0\)
\(\Rightarrow A=\left(...1\right)+\left(...1\right)+\left(...1\right)+...+\left(...1\right)+1\)
\(\Rightarrow A=\left(.....0\right)⋮5\)
\(\text{Vậy }A⋮5\)
\(2\)
\(n^2+n+1=n.n+n.1+1=n\left(n+1\right)+1\)
\(\text{Mà n ( n + 1 ) là hai số liên tiếp nên chúng là số chãn}\)
\(\Rightarrow n\left(n+1\right)+1\text{là số lẻ}\)
\(\Rightarrow\left(n^2+n+1\right)⋮4̸\)
A = 1 + 2 + 22 + 23 +.... + 239
= (1+2+22 + 23) + (24+25+26+27) + ... + (236+237+238+239)
= 15 + 24(1+2+22+23) + ... + 236(1+2+22+23)
= 15(24+...+236) \(⋮\)15
T = 1257 - 259
= 1257 - 1256
= 1256(125-1)
= 1256.124 \(⋮\) 124
M = 7 + 72 + 73 + ... + 72000
= (7+72) + (73+74) + ... + (71999+72000)
= 7(1+7) + 73(1+7) + ... + 71999(1+7)
= 8(7+73+...+71999) \(⋮\) 8
P = a + a2 + a3 + ... + a2n
= chưa nghĩ ra~
còn phần cuối t xin
P=a+a2+...+a2n
=(a2+a)+...+(a2n+a2n-1)
=a(a+1)+...+a2n-1(a+1)
=(a+1)*(a+...+a2n-1) chia hết a+1
Liệt kê các phần tử của 2 tập hợp
a. \(A=\left\{0,1,2,3\right\}\) \(B=\left\{-2,-1,0,1,2\right\}\)
\(A\cap B=\left\{0,1,2\right\}\)
b. Có 20 tích được tạo thành
-2 | -1 | 0 | 1 | 2 | |
0 | 0 | 0 | 0 | 0 | 0 |
1 | -2 | -1 | 0 | 1 | 2 |
2 | -4 | -2 | 0 | 2 | 4 |
3 | -6 | -3 | 0 | 3 | 6 |
a) nếu n=3k thì n.(n+2).(n+7) chia hết cho 3
nếu n=3k+1 thì n+2 chia hết cho 3 => n.(n+2).(n+7) chia hết cho 3
nếu n=3k+2 thì n+7 chia hết cho 3 => n.(n+2).(n+7) chia hết cho 3
b)nếu n=0 thì 5^n =1 => 5^n-1=0 chia hết cho 4
nếu n=1 thì 5^n=5 => 5^n-1=4 chia hết cho 4
nếu n>1 thì 5^n có 2 chữ số tận cùng là 25 mà 5^n-1 có 2 chữ số tận cùng là 24 chia hết cho 4
vậy 5^n-1 chia hết cho 4
c) n(n+1)+2 = n^2+n+2
vì n(n+1) là hai số tự nhiên liên tiếp nên có chữ số tận cùng là: 0,2,6=> n(n+1)+2 có chữ số tận cùng là 2,4,8 nên không chia hết cho 5. vậy n^2+n+2 không chia hết cho 5