Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(x=a+b+c;y=ab+bc+ac;z=abc\)
Suy ra : \(2\left(1+abc\right)+\sqrt{2\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)}\ge\left(1+a\right)\left(1+b\right)\left(1+c\right)\)
\(\Leftrightarrow2\left(1+z\right)+\sqrt{2\left(x^2+y^2+z^2-2xz-2y+1\right)}\ge x+y+z+1\)
\(\Leftrightarrow2\left(x^2+y^2+z^2-2xz-2y+1\right)\ge\left(x+y-z-1\right)^2\)
\(\Leftrightarrow x^2+y^2+z^2-2xy-2xz+2x+2yz-2y-2z+1\ge0\)
\(\Leftrightarrow\left(x-y-z+1\right)^2\ge0\) (luôn đúng)
Vậy bđt ban đầu được chứng minh
\(\frac{\Sigma_{cyc}a^3\left(b-c\right)}{\Sigma_{cyc}a^2\left(b-c\right)}=\frac{-\left(a-b\right)\left(b-c\right)\left(c-a\right)\left(a+b+c\right)}{-\left(a-b\right)\left(b-c\right)\left(c-a\right)}=a+b+c\ge3\sqrt[3]{abc}\)
Vì vai trò a,b,c như nhau nên ta giả sử
\(a\ge b\ge c>0\)
Ta có: \(2b\left(a+c\right)^2-\left(a+b\right)\left(b+c\right)\left(c+a\right)=\left(a+c\right)\left(a-b\right)\left(b-c\right)\ge0\)
\(\Rightarrow2b\left(a+c\right)^2\ge\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
Khi đó:
\(\frac{a^2+b^2+c^2}{ab+bc+ca}+\frac{8abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)\(\ge\frac{a^2+b^2+c^2}{ab+bc+ca}+\frac{4ac}{\left(a+c\right)^2}\) (1)
Mà \(\frac{a^2+b^2+c^2}{ab+bc+ca}+\frac{4ac}{\left(a+c\right)^2}-2=\frac{\left(a^2+c^2-ab-bc\right)^2}{\left(a+c\right)^2\left(ab+bc+ca\right)}\ge0\) (2)
Từ (1) và (2) =>Đpcm
Ta dễ dàng chứng minh được \(a^2+b^2+c^2\ge ab+bc+ac\)
\(\Rightarrow\frac{a^2+b^2+c^2}{ab+bc+ac}\ge1\Rightarrow\frac{a^2+b^2+c^2}{ab+bc+ac}\ge\frac{a^2+b^2+c^2+a^2}{ab+bc+ac+a^2}=\frac{2a^2+b^2+c^2}{\left(a+c\right)\left(a+b\right)}\)
Suy ra cần chứng minh \(\frac{2a^2+b^2+c^2}{\left(a+b\right)\left(a+c\right)}+\frac{8abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge2\)
Điều này tương đương với \(\left(b+c\right)\left(2a^2+b^2+c^2\right)+8abc\ge2\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
\(\Leftrightarrow2a^2b+2a^2c+b^3+b^2c+c^2b+c^3+8abc\ge2\left(2abc+a^2b+ac^2+a^2c+b^2c+b^2a+bc^2\right)\)
\(\Leftrightarrow\left(b^2-2bc+c^2\right)\left(b+c-2a\right)\ge0\Leftrightarrow\left(b-c\right)^2\left(b+c-2a\right)\ge0\) (luôn đúng)
Vậy bđt ban đầu được chứng minh
Áp dụng BĐT Svarxơ:
\(\Sigma\frac{a^2}{\sqrt{5-2\left(b+c\right)}}\ge\frac{\left(a+b+c\right)^2}{\sqrt{5-2\left(b+c\right)}+\sqrt{5-2\left(a+c\right)}+\sqrt{5-2\left(a+b\right)}}\)\(\frac{3^2}{\sqrt{5-2\left(b+c\right)}+\sqrt{5-2\left(a+c\right)}+\sqrt{5-2\left(b+c\right)}}\)
Có: \(\sqrt{5-2\left(b+c\right)}=\sqrt{2\left(1-\left(3-a\right)\right)+3}\)\(=\sqrt{-4+2a+3}=\sqrt{2a-1}\)
CMTT: \(\sqrt{5-2\left(a+c\right)}=\sqrt{2b-1}\);\(\sqrt{5-2\left(a+b\right)}=\sqrt{2c-1}\)
\(\Rightarrow\Sigma\frac{a^2}{\sqrt{5-2\left(b+c\right)}}\ge\frac{9}{\sqrt{2a-1}+\sqrt{2b-1}+\sqrt{2c-1}}\)\(\ge\frac{9}{\sqrt{\left(1^2+1^2+1^2\right)\left(2a-1+2b-1+2c-1\right)}}\)(BDT Bunhiacopxki)\(=\frac{9}{\sqrt{3\left[2\left(a+b+c\right)-3\right]}}=\frac{9}{\sqrt{3\left[6-3\right]}}=\frac{9}{3}=3\)(dpcm)
a,b dể tự làm nha
c)ta có: \(\left(a-b\right)^2\ge0\Leftrightarrow a^2+b^2-2ab\ge0\Leftrightarrow a^2+2ab+b^2-2ab-2ab\ge0\)
\(\Leftrightarrow\left(a+b\right)^2\ge4ab\) mà a+b=1
\(\Rightarrow1\ge4ab\Leftrightarrow ab\le\frac{1}{4}\)
lại có: \(\left(a-b\right)^2\ge0\Leftrightarrow a^2+b^2\ge2ab\) mà \(ab\le\frac{1}{4}\)
tahy vào có \(a^2+b^2\ge2\times\frac{1}{4}\Leftrightarrow a^2+b^2\ge\frac{1}{2}\left(dpcm\right)\)
Ta có : \(a^2\left(1+b^2\right)+b^2\left(1+c^2\right)+c^2\left(1+a^2\right)\ge6abc\)
\(\Leftrightarrow\left(a^2-2abc+b^2c^2\right)+\left(b^2-2abc+a^2c^2\right)+\left(c^2-2abc+a^2b^2\right)\ge0\)
\(\Leftrightarrow\left(a-bc\right)^2+\left(b-ac\right)^2+\left(c-ab\right)^2\ge0\) (luôn đúng)
Vì bđt cuối luôn đúng nên bđt ban đầu được chứng minh
Sử dụng bất đẳng thức Bunhiacopski ta có :
\(\left(a+b+c\right)^2\le\left(a^2+2\right)\left[1+\frac{\left(b+c\right)^2}{2}\right]\)
Tiếp theo ta chứng minh \(3\left[1+\frac{\left(b+c\right)^2}{2}\right]\le\left(b^2+2\right)\left(c^2+2\right)\)
Thật vậy, \(bpt\Leftrightarrow6+3b^2+3c^2+6bc\le2b^2c^2+4b^2+4c^2+8\)
\(\Leftrightarrow b^2+c^2+2b^2c^2-6bc+2\ge0\)
\(\Leftrightarrow\left(b^2-bc+c^2\right)+2\left(bc-1\right)^2\ge0\) (Đúng)
Vậy thì \(3\left(a+b+c\right)^2\le\left(a^2+2\right)\left(b^2+2\right)\left(c^2+2\right)\) (đpcm)
ta có