\(\in\) Z thì :

a) |a| + |b| \(\g...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 4 2017

Sửa đề: chứng minh \(S\ge6\)

Ta có: 

\(S=\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}=\left(\frac{a}{b}-2+\frac{b}{a}\right)+\left(\frac{b}{c}-2+\frac{c}{b}\right)+\left(\frac{a}{c}-2+\frac{c}{a}\right)+6\)

\(=\left(\sqrt{\frac{a}{b}}-\sqrt{\frac{b}{a}}\right)^2+\left(\sqrt{\frac{b}{c}}-\sqrt{\frac{c}{a}}\right)^2+\left(\sqrt{\frac{a}{c}}-\sqrt{\frac{c}{a}}\right)^2+6\ge6\)

\(\Rightarrow\)ĐPCM

7 tháng 4 2017

Đây nè k cho mình nha:

Ta có \(\frac{a+b}{c}>\frac{a+b}{a+b+c}\)

         \(\frac{b+c}{a}>\frac{b+c}{a+b+c}\)

         \(\frac{a+c}{b}>\frac{a+c}{a+b+c}\)

Suy ra \(S>\frac{a+b}{a+b+c}+\frac{b+c}{a+b+c}+\frac{a+c}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)

Vậy S > 2

7 tháng 4 2017

Đề có bị sao không vậy? \(S\) không thể bằng \(2\) Sửa đề:

Chứng minh rằng \(S\ge6\)

Giải:

Ta có:

\(S=\dfrac{a+b}{c}+\dfrac{b+c}{a}+\dfrac{a+c}{b}\)

\(=\left(\dfrac{a}{c}+\dfrac{b}{c}\right)+\left(\dfrac{b}{a}+\dfrac{c}{a}\right)+\left(\dfrac{a}{b}+\dfrac{c}{b}\right)\)

\(=\left(\dfrac{a}{c}+\dfrac{c}{a}\right)+\left(\dfrac{b}{c}+\dfrac{c}{b}\right)+\left(\dfrac{b}{a}+\dfrac{a}{b}\right)\)

\(\Rightarrow S\ge2+2+2=6\)

Vậy \(S\ge6\) (Đpcm)

7 tháng 4 2017

đề k bị sao bn ơi

23 tháng 7 2017

Nếu \(5a^2+15ab-b^2⋮49\)

\(\Leftrightarrow5a^2+15ab-b^2⋮7.\left(1\right)\)

Mặt khác lại có

 \(\left(5a^2+15ab-b^2\right)+\left(3a+b\right)^2=7a\left(2a+3b\right)⋮7.\left(2\right)\)

Từ (1) và (2) suy ra 

\(\left(3a+b\right)^2⋮7\Rightarrow3a+b⋮7\)(vì 7 là số nguyên tố)

Nếu \(3a+b⋮7\),ta có 

\(\left(3a+b\right)+2\left(2a+3b\right)=7\left(a+b\right)⋮7\)

\(\Rightarrow2\left(2a+3b\right)⋮7\Rightarrow2a+3b⋮7\)(vì(2,7)=1).

Suy ra \(\left(5a^2+15ab-b^2\right)+\left(3a+b\right)^2\)

=\(7a\left(2a+3b\right)⋮49.\left(3\right)\)

Vì \(3a+b⋮7\)nên \(\left(3a+b\right)^2⋮49.\left(4\right)\)

Từ (3)và(4) suy ra \(5a^2+15ab-b^2⋮49\)

Vậy \(5a^2+15ab-b^2⋮49\Leftrightarrow3a+b⋮7\)

hỏi bài và tự trả lời thì hỏi làm gì OvO

9 tháng 7 2019

Ta có : 3a + 11b chia hết cho 17

       13( 3a + 11b ) chia hết cho 17

Hay : 39a + 143b chia hết cho 17

Mà : 34a + 136b chia hết cho 17

Suy ra : (39a+143b)-(34a+136b)=5a+7b chia hết cho 17

Bạn tự chứng minh theo chiều ngược lại nhé !

9 tháng 1 2018

|a| và |b| là số nguyên dương

-|b| là số âm 

Vì số âm luôn bé hơn số dương nên -|b| < |a| < |b|

9 tháng 1 2018

Vì l a l \(\ge\)0 với mọi a \(\in\)Z

    l b l \(\ge\)0 với mọi a \(\in\)Z mà l a l < l b l => l b l > 0

    - l b l \(\le\)0 với mọi b \(\in\)Z => - l b l \(\le\)l a l

=> - l b l \(\le\)l a l < l b l ( dpcm )

26 tháng 4 2017

a,b,c là gì?

27 tháng 4 2017

a,b,c nó ko cho,mình phải tự tìm